imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the fundamental principles of aircraft design, including aerodynamics, weight distribution, and structural integrity.
  • Design and analyze aircraft components in a virtual environment, focusing on materials and load-bearing capacity.
  • Conduct stress and strain analysis to assess component performance under various flight scenarios.
  • Optimize aircraft designs to reduce weight while maintaining structural stability and safety.
  • Apply knowledge of materials and design principles to ensure optimal performance in different flight conditions.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Propulsion Systems and Engine Design

Immerse yourself in the world of propulsion systems with an in-depth exploration of jet engines, rockets, and electric propulsion systems. Through virtual labs, gain hands-on experience in analyzing key engine components, including compressors, turbines, combustion chambers, and nozzles. Engage with interactive simulations that simulate fuel efficiency, thrust generation, and thermal management in propulsion systems, while optimizing engine performance for various operational conditions.

Aseptic Technique Simulation

Reinforce the importance of aseptic techniques during surgery with XR-enabled scenarios that immerse students in maintaining a sterile environment. Students will practice critical procedures such as hand scrubbing, gowning, gloving, and managing the sterile field, with virtual consequences for breaches in sterility, such as simulated infections or procedural delays.

Control System Design and Tuning

Explore the design, simulation, and tuning of control systems for mechanical and electrical applications. Through interactive simulations, students will design feedback control systems using PID (Proportional-Integral-Derivative) controllers to regulate variables such as speed, temperature, or position. Real-time feedback will help students evaluate control system stability, response times, and error minimization for optimal system performance.

Mechanical System Design and Optimization

Enable students to design and optimize complex mechanical systems through XR simulations. The simulation offers virtual scenarios where students can create and refine mechanical systems like engines, HVAC systems, turbines, and gearboxes. They will use interactive tools to adjust system parameters, reduce weight, improve efficiency, and lower production costs. Real-time feedback will guide students on design constraints, feasibility, and cost-effectiveness, helping them develop the skills to optimize mechanical systems for peak performance.

Cardiac Rhythm Interpretation and EKG Analysis

Immerse students in the art of reading and interpreting EKG rhythms for diagnosing cardiac conditions in critical situations. Through XR simulations, students will explore abnormalities such as tachycardia, bradycardia, and arrhythmias, while gaining insights into EKG analysis and appropriate clinical interventions.

Yield Optimization and Defect Reduction

Explore yield optimization and defect reduction through interactive XR simulations. Analyze manufacturing data, address common defects like contamination and etching errors, and implement strategies to improve process efficiency, product yield, and defect minimization.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top