imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the design and installation of Drainage, Waste, and Vent (DWV) systems for residential, commercial, and industrial buildings.
  • Gain experience in installing drainage pipes, waste stacks, and vent pipes, ensuring compliance with plumbing codes.
  • Practice sloping pipes correctly to maintain efficient drainage and prevent blockages or improper venting.
  • Learn to troubleshoot common issues in DWV systems, such as clogs, venting problems, or improper flow.
  • Receive feedback on installation techniques, system performance, and adherence to plumbing codes, with XR-enhanced simulations for realistic, interactive training.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Fixture Design and Workholding Techniques

Explore XR-based simulations for designing and using fixtures, jigs, and workholding devices for machining complex parts. Students will engage in virtual fixture design, learning to create custom fixtures to hold irregularly shaped workpieces securely. The interactive lessons cover clamping techniques, workpiece alignment, and ensuring rigidity during cutting operations. Real-time feedback helps students assess the effectiveness of their fixture designs, machining stability, and part accuracy, all while improving their ability to handle complex machining tasks.

Building Automation Systems (BAS) and Smart HVAC

The Building Automation Systems (BAS) and Smart HVAC Simulation equips students with skills in installing and programming BAS to control HVAC systems, lighting, and other building systems in large commercial buildings. Students will engage in virtual scenarios to set up and program BAS systems, optimize energy use, and monitor the indoor climate. Interactive exercises will involve configuring smart thermostats, sensors, and networked devices for automated temperature and airflow control. Real-time feedback will focus on system efficiency, energy consumption, and troubleshooting networked components.

Structural Analysis and Design

This XR simulation teaches students the principles of structural analysis and the design of buildings, bridges, and other infrastructures. Virtual scenarios allow students to analyze the strength, stability, and behavior of structures under various loads (e.g., dead loads, live loads, wind loads, seismic loads). Students use interactive tools to design beams, columns, trusses, and frames, selecting materials like steel, concrete, and timber. The simulation provides feedback on stress distribution, load-bearing capacity, safety factors, and compliance with engineering standards, helping students make sound design decisions.

CNC Machine Programming and Operation

CNC Machine Programming and Operation trains students on Computer Numerical Control (CNC) machines, essential in modern manufacturing for automated machining. Students will virtually program CNC machines to cut, mill, or shape materials according to specific designs, and simulate the generation and execution of G-code. The course includes 3D visualization of machining paths, with real-time feedback on tool wear, precision, and cycle times to optimize machining processes.

Rocket Propulsion and Launch Systems

Explore the principles of rocket propulsion and the dynamics of launch systems through XR-powered simulations. Students engage in virtual rocket labs where they design and analyze rocket engines, simulate propellant flow, and study thrust and trajectory. Interactive scenarios allow students to gain a deeper understanding of staging, ignition sequences, and flight stability during launch, with feedback provided on propulsion efficiency, fuel consumption, and optimization of launch trajectories.

Power Electronics and Converters

The Power Electronics and Converters module provides virtual environments where students learn the fundamentals of power electronics, including AC-DC, DC-DC, and DC-AC converters. Through interactive simulations, students design, test, and analyze key power conversion circuits while focusing on efficiency, performance, and system optimization.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top