imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the design and installation of Drainage, Waste, and Vent (DWV) systems for residential, commercial, and industrial buildings.
  • Gain experience in installing drainage pipes, waste stacks, and vent pipes, ensuring compliance with plumbing codes.
  • Practice sloping pipes correctly to maintain efficient drainage and prevent blockages or improper venting.
  • Learn to troubleshoot common issues in DWV systems, such as clogs, venting problems, or improper flow.
  • Receive feedback on installation techniques, system performance, and adherence to plumbing codes, with XR-enhanced simulations for realistic, interactive training.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Airflow and Duct Design Simulation

The Airflow and Duct Design Simulation trains students in calculating airflow requirements and designing ducts to ensure HVAC systems operate efficiently. The simulation features virtual tools for calculating airflow based on building dimensions and heating/cooling loads. Students engage in interactive duct design exercises, where they size ducts, select materials, and place vents for optimal airflow. Real-time feedback is provided on pressure loss, air distribution efficiency, and adherence to industry standards.

HVAC System Maintenance Simulation

The HVAC System Maintenance Simulation provides training on routine HVAC maintenance, including system cleaning, filter replacement, and component checks. Students perform virtual maintenance tasks such as changing air filters, cleaning condenser coils, and checking refrigerant levels. Interactive scenarios allow students to inspect electrical components, belts, motors, and thermostats for signs of wear or malfunction. Real-time feedback is given on maintenance efficiency, system condition, and preventive measures to avoid future breakdowns.

Control Systems and Automation

This XR simulation trains students in designing and implementing control systems for automated mechanical processes. It provides virtual scenarios where students can program control systems, such as PID controllers, to regulate critical variables like temperature, speed, and pressure in automated systems. Interactive lessons cover feedback loops, sensors, and actuators used in automated machinery, with real-time feedback on the stability, precision, and response times of the control systems.

Renewable Energy Systems (Solar, Wind, and Battery Storage)

The Electromagnetics and Wave Propagation module offers virtual simulations of renewable energy systems, including solar power, wind turbines, and battery storage. Through interactive exercises, students analyze energy conversion efficiency, system design, and grid integration, gaining a deeper understanding of electromagnetic interactions and wave propagation in renewable energy technologies.

Arterial Blood Gas (ABG) Interpretation

Enhance students' skills in interpreting arterial blood gas (ABG) results with immersive XR simulations. Students will analyze ABG values, identify imbalances, and understand their clinical implications for patient care.

Bridge Design and Analysis

Explore the principles of designing and analyzing a variety of bridges, such as suspension, truss, arch, and beam structures, through immersive XR simulations. Students can enhance their skills by creating virtual models, analyzing forces, and assessing structural behavior under dynamic loads. Engage in interactive scenarios to test bridge designs against real-world challenges, including wind, earthquakes, and traffic. Receive detailed feedback on load distribution, material optimization, and stability improvements to refine designs effectively.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top