Learn how to prevent Electrostatic Discharge (ESD) damage through interactive XR simulations. Understand the critical measures required to protect sensitive semiconductor devices during fabrication, handling, and packaging processes.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
Explore the principles of biomechanics and motion analysis through immersive XR simulations. Students will analyze human movement, understand forces acting on the body, and assess the performance of musculoskeletal systems in dynamic environments, enhancing their ability to apply these concepts to health, sports, and rehabilitation.
Train students to perform stress, strain, and deformation analysis on mechanical components using Finite Element Analysis (FEA) through immersive XR simulations. The virtual environment allows students to apply loads, constraints, and boundary conditions to 3D models of mechanical components, providing interactive lessons on stress distribution, thermal effects, vibration analysis, and material failure points. Feedback is provided on the structural integrity, safety factors, and optimization of mechanical designs to improve understanding and decision-making in engineering design processes.
The Roof Construction and Truss Assembly Simulation provides training on roof construction, focusing on the installation of rafters, trusses, and roofing materials. Virtual scenarios guide students through assembling trusses and rafters for various roof designs, including gable, hip, and flat roofs. Interactive exercises allow students to practice installing roof sheathing, underlayment, and roofing materials such as shingles or tiles. Real-time feedback is given on roof slope, weatherproofing techniques, and ensuring the structural integrity of the roof.
Enhance your skills in computer-aided design (CAD) for creating detailed 3D models and engineering blueprints in virtual environments.
The Circuit Design and Analysis module allows students to explore virtual electrical design environments where they can create, test, and analyze series, parallel, and complex circuits. Through interactive lessons and simulations, students gain insights into essential circuit laws and theories, while mastering troubleshooting and performance evaluation using virtual components.
The Control Systems and Automation module provides students with a virtual environment to design, analyze, and simulate control systems. Through interactive exercises and simulations, students explore PID controllers, feedback loops, and control theory, gaining practical insights into optimizing system performance, ensuring stability, and mastering automation in industrial processes.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.