Learn how to prevent Electrostatic Discharge (ESD) damage through interactive XR simulations. Understand the critical measures required to protect sensitive semiconductor devices during fabrication, handling, and packaging processes.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
Explore metabolic pathways and their engineering through immersive XR simulations, focusing on optimizing microbial processes to produce valuable biochemicals. Utilize virtual tools to study pathways, identify bottlenecks, and implement strategies for efficient metabolite production.
Explore XR-driven CAM (Computer-Aided Manufacturing) software simulations to teach students how to generate toolpaths for CNC machining. Students will virtually import 3D models, set up machining operations, and create G-code for CNC machines. Interactive lessons guide them through toolpath creation, cutting strategies, and simulating machining operations. Feedback on toolpath efficiency, machining time, and material removal helps refine their CAM and CNC programming skills.
This module focuses on automotive transmission systems, including manual, automatic, and CVTs. It provides students with a hands-on approach to understanding the design and functionality of various transmission components such as gears, clutches, and differentials. Through virtual simulations, students will learn about gear ratio calculations, shifting mechanisms, and the optimization of power transmission in vehicles.
The Weld Joint Preparation and Fit-Up simulation provides hands-on virtual training in preparing materials and achieving proper joint alignment before welding. Through XR-enabled immersive scenarios, participants practice critical pre-welding tasks and receive real-time feedback to ensure precision and quality.
Pneumatics and Hydraulics Simulation trains students in the operation and design of pneumatic and hydraulic systems, which are essential in many mechatronic applications. Through virtual simulations, students can design and control pneumatic and hydraulic circuits using components like valves, cylinders, pumps, and actuators. They will also control pressures and flow rates to perform tasks such as lifting, pressing, and clamping. Real-time feedback on system efficiency, fluid dynamics, and troubleshooting leaks or pressure issues enhances learning and system optimization.
Immerse in an XR-powered environment to master the calibration and adjustment of flight control systems, including ailerons, rudders, elevators, and flaps. Gain hands-on experience in ensuring precision and smooth operation for optimal aircraft control.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.