Learn how to prevent Electrostatic Discharge (ESD) damage through interactive XR simulations. Understand the critical measures required to protect sensitive semiconductor devices during fabrication, handling, and packaging processes.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
Explore metabolic pathways and their engineering through immersive XR simulations, focusing on optimizing microbial processes to produce valuable biochemicals. Utilize virtual tools to study pathways, identify bottlenecks, and implement strategies for efficient metabolite production.
Teach students how to assist in post-surgical care, including wound management and supporting patient recovery using XR technology. Virtual scenarios will guide students through the proper techniques for caring for post-operative wounds, such as cleaning, dressing, and monitoring for infection. Additionally, students will learn how to safely transfer patients from the OR to the recovery room, with real-time feedback on patient care protocols, monitoring vitals, and recognizing potential complications.
The Control Systems and Automation module provides students with a virtual environment to design, analyze, and simulate control systems. Through interactive exercises and simulations, students explore PID controllers, feedback loops, and control theory, gaining practical insights into optimizing system performance, ensuring stability, and mastering automation in industrial processes.
Gain expertise in biopharmaceutical development through immersive XR simulations, focusing on the production of therapeutic proteins, monoclonal antibodies, and drug discovery processes. Apply virtual labs and interactive tutorials to explore protein expression, purification, and regulatory compliance in pharmaceutical production.
Explore XR-based simulations for maintaining and repairing avionics systems, including communication, navigation, and monitoring equipment. Students will engage with components like radar systems, transponders, flight control systems, and GPS, troubleshooting electrical issues, calibrating instruments, and updating software. Real-time feedback ensures optimal diagnostic accuracy, fault identification, and avionics performance.
Mechanical Systems Design and Integration offers hands-on experience in designing and integrating mechanical systems with electrical components and sensors. Students will engage in virtual assembly of mechanical systems, such as gears, motors, and actuators, while integrating sensors and control systems to automate processes. Real-time feedback on system performance, including power consumption, efficiency, and alignment, provides students with valuable insights to optimize designs and improve functionality.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.