imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
Learn the causes and effects of ESD on semiconductor devices and circuits. Explore the vulnerabilities of devices to static electricity during manufacturing and assembly. Gain hands-on experience in using anti-static equipment such as wrist straps, mats, and ionizers. Practice proper grounding techniques and procedures to minimize charge buildup in working environments. Analyze virtual scenarios showcasing ESD damage during key stages like wafer processing, testing, and packaging. Learn how to identify high-risk situations and implement corrective measures.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Mechanics of Solids (Stress and Strain Analysis)

This XR simulation trains students to analyze stress and strain in solid objects subjected to various loading conditions. Virtual scenarios allow students to test mechanical components under tensile, compressive, shear, and torsional loads. Interactive lessons focus on calculating stress concentration factors, deflections, and material deformation, providing essential insights into the behavior of materials under stress. Students receive feedback on structural integrity, safety factors, and failure analysis to ensure optimal design and material selection.

Circuit Design and Troubleshooting

Explore the design and troubleshooting of electrical circuits by simulating various scenarios, including short circuits, overloads, and wiring faults. Students will create, test, and simulate different electrical circuits, such as parallel, series, and combination circuits. Using virtual multimeters and other testing tools, students will diagnose and resolve common circuit faults while receiving real-time feedback on their designs and troubleshooting methods.

Structural Analysis and Finite Element Analysis (FEA)

Explore the principles of structural analysis and the application of Finite Element Analysis (FEA) to evaluate and optimize engineering designs.

Semiconductor Device Design Simulation

Engage in semiconductor device design through interactive XR simulations. Design basic components like diodes, transistors, and integrated circuits using 2D/3D models, explore doping profiles, and evaluate performance characteristics with real-time feedback.

Signal Processing and Filtering Techniques

The Signal Processing and Filtering Techniques module provides virtual tools and interactive exercises to teach students how to process and analyze electrical signals using both digital and analog filtering methods. Through hands-on simulations, students explore signal conditioning, transformation, and noise reduction techniques.

Structural Analysis and Design

This XR simulation teaches students the principles of structural analysis and the design of buildings, bridges, and other infrastructures. Virtual scenarios allow students to analyze the strength, stability, and behavior of structures under various loads (e.g., dead loads, live loads, wind loads, seismic loads). Students use interactive tools to design beams, columns, trusses, and frames, selecting materials like steel, concrete, and timber. The simulation provides feedback on stress distribution, load-bearing capacity, safety factors, and compliance with engineering standards, helping students make sound design decisions.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top