imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
Learn the causes and effects of ESD on semiconductor devices and circuits. Explore the vulnerabilities of devices to static electricity during manufacturing and assembly. Gain hands-on experience in using anti-static equipment such as wrist straps, mats, and ionizers. Practice proper grounding techniques and procedures to minimize charge buildup in working environments. Analyze virtual scenarios showcasing ESD damage during key stages like wafer processing, testing, and packaging. Learn how to identify high-risk situations and implement corrective measures.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Basic Tool Usage and Safety

The Basic Tool Usage and Safety Simulation teaches students how to safely and efficiently use basic carpentry tools, including both hand tools and power tools. Virtual tutorials guide students through the correct use of hand tools like hammers, saws, measuring tapes, levels, and chisels. The simulation also covers the operation of power tools such as circular saws, miter saws, drills, and nail guns. Safety scenarios help students understand proper handling, tool maintenance, and the importance of personal protective equipment (PPE). Real-time feedback focuses on tool handling, accuracy, and safety adherence.

Engineering Design and CAD Modeling

Enhance your skills in computer-aided design (CAD) for creating detailed 3D models and engineering blueprints in virtual environments.

Energy Efficiency and Green HVAC Technologies

The Energy Efficiency and Green HVAC Technologies Simulation provides students with hands-on experience in installing and operating energy-efficient HVAC systems and integrating green technologies like geothermal heat pumps, solar-assisted systems, and energy recovery ventilators (ERVs). Students will virtually install and operate these systems while measuring energy consumption and system performance. Scenarios include integrating renewable energy sources like solar panels into HVAC systems. Real-time feedback will focus on energy savings, system performance, and environmental impact.

Metal Cutting and Preparation Simulation

The Metal Cutting and Preparation Simulation immerses users in various metal cutting techniques such as oxy-fuel, plasma cutting, and grinding, all essential for preparing metals for welding. The simulation includes interactive scenarios for cutting different metals and thicknesses, along with grinding and smoothing edges. Feedback is provided on cut precision, surface quality, and preparation to ensure optimal conditions for welding.

Structural Analysis and Design

This XR simulation teaches students the principles of structural analysis and the design of buildings, bridges, and other infrastructures. Virtual scenarios allow students to analyze the strength, stability, and behavior of structures under various loads (e.g., dead loads, live loads, wind loads, seismic loads). Students use interactive tools to design beams, columns, trusses, and frames, selecting materials like steel, concrete, and timber. The simulation provides feedback on stress distribution, load-bearing capacity, safety factors, and compliance with engineering standards, helping students make sound design decisions.

Surface Grinding and Finishing

Explore XR-based simulations for surface grinding and finishing operations. Students will interact with virtual surface grinders, simulating grinding processes on different materials to achieve precise flatness and superior surface finishes. Through scenarios involving the selection of grinding wheels, feed adjustments, and optimal workpiece setups, users can refine their skills in precision grinding. Feedback is provided on surface finish quality, material removal rates, and grinding accuracy, allowing users to enhance their machining abilities.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top