imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
Learn the causes and effects of ESD on semiconductor devices and circuits. Explore the vulnerabilities of devices to static electricity during manufacturing and assembly. Gain hands-on experience in using anti-static equipment such as wrist straps, mats, and ionizers. Practice proper grounding techniques and procedures to minimize charge buildup in working environments. Analyze virtual scenarios showcasing ESD damage during key stages like wafer processing, testing, and packaging. Learn how to identify high-risk situations and implement corrective measures.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Human Anatomy and Physiology Simulation

Provide an in-depth understanding of human anatomy and physiology with a focus on systems relevant to biomedical applications. Using immersive XR technology, students can explore and interact with virtual 3D models of the human body, gaining insights into organ systems, tissues, and cells and their implications for medical device design.

Fixture Design and Workholding Techniques

Explore XR-based simulations for designing and using fixtures, jigs, and workholding devices for machining complex parts. Students will engage in virtual fixture design, learning to create custom fixtures to hold irregularly shaped workpieces securely. The interactive lessons cover clamping techniques, workpiece alignment, and ensuring rigidity during cutting operations. Real-time feedback helps students assess the effectiveness of their fixture designs, machining stability, and part accuracy, all while improving their ability to handle complex machining tasks.

CRISPR Technology and Applications

Gain insights into CRISPR technology through immersive XR simulations, focusing on its advanced applications in gene editing, diagnostics, and therapeutic development. Apply CRISPR techniques in agriculture, medicine, and genetic research to design experiments, target DNA regions, and address real-world challenges.

Gas Line Installation and Leak Detection

Gain experience in the installation and maintenance of gas lines for both residential and commercial applications. This simulation covers the selection of appropriate pipe materials, the proper installation of fittings, and techniques for testing gas line pressure. Simulated leak detection is performed using soap bubbles and gas detectors, ensuring safety and preventing gas leaks. Real-time feedback is provided on installation quality, safety practices, and leak prevention methods.

Machining Tolerances and Fits

Explore XR-based simulations for machining parts to meet specified tolerances and selecting appropriate fits for mating components. Students will interact with virtual machining scenarios, adjusting parameters to achieve precise tolerances, whether it's clearance, interference, or transition fits. This experience provides a deeper understanding of machining precision, helping to avoid the production of undersized or oversized parts. Real-time feedback ensures that users can evaluate part quality, tolerance control, and fit accuracy for optimal machining results.

Control Systems and Automation

This XR simulation trains students in designing and implementing control systems for automated mechanical processes. It provides virtual scenarios where students can program control systems, such as PID controllers, to regulate critical variables like temperature, speed, and pressure in automated systems. Interactive lessons cover feedback loops, sensors, and actuators used in automated machinery, with real-time feedback on the stability, precision, and response times of the control systems.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top