Learn how to prevent Electrostatic Discharge (ESD) damage through interactive XR simulations. Understand the critical measures required to protect sensitive semiconductor devices during fabrication, handling, and packaging processes.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
The Advanced Welding Techniques (Exotic Metals and Alloys) Simulation provides experience in welding high-performance materials like titanium, Inconel, and other exotic alloys. It offers virtual practice in welding materials that require specialized techniques due to their heat sensitivity, oxidation tendencies, and high strength. Students adjust welding settings, gas flow, and filler materials to meet the unique needs of these advanced metals. Feedback is provided on weld quality, material integrity, and the specific welding methods required for working with these materials.
Learn to design and install water supply systems that provide clean water to buildings. This simulation offers virtual practice in designing and installing cold and hot water supply lines, selecting appropriate pipe materials like copper, PEX, or galvanized steel. It also includes connecting supply lines to fixtures, appliances, and water heaters. Real-time feedback is provided on water pressure, flow rates, and system performance.
Explore the design and troubleshooting of electrical circuits by simulating various scenarios, including short circuits, overloads, and wiring faults. Students will create, test, and simulate different electrical circuits, such as parallel, series, and combination circuits. Using virtual multimeters and other testing tools, students will diagnose and resolve common circuit faults while receiving real-time feedback on their designs and troubleshooting methods.
Teach students the principles of fluid dynamics through immersive XR simulations and hands-on practice with Computational Fluid Dynamics (CFD). Virtual scenarios allow students to simulate fluid flow in pipes, pumps, valves, and aerodynamic surfaces, offering a deep dive into the behavior of fluids in different environments. Students will use interactive tools to set up boundary conditions, generate meshes, and analyze flow patterns using CFD software. Real-time feedback focuses on improving flow efficiency, managing pressure drop, understanding turbulence, and optimizing design solutions.
This XR simulation teaches students the principles of structural analysis and the design of buildings, bridges, and other infrastructures. Virtual scenarios allow students to analyze the strength, stability, and behavior of structures under various loads (e.g., dead loads, live loads, wind loads, seismic loads). Students use interactive tools to design beams, columns, trusses, and frames, selecting materials like steel, concrete, and timber. The simulation provides feedback on stress distribution, load-bearing capacity, safety factors, and compliance with engineering standards, helping students make sound design decisions.
Explore the world of designing, building, and controlling Unmanned Aerial Vehicles (UAVs) and aerospace robotics for autonomous flight. In this simulation, students will gain hands-on experience by programming UAVs for specific missions, including navigation, obstacle avoidance, and data collection. Using XR-enabled environments, students will interact with drone dynamics, sensor integration, and flight path optimization techniques, while receiving valuable feedback on UAV stability, control responses, and overall mission performance.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.