imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Master the techniques of endotracheal intubation and securing airways in emergency scenarios.
  • Gain expertise in using bag-valve-mask (BVM) ventilation to ensure adequate oxygenation in critical patients.
  • Develop the ability to recognize signs of airway obstruction, hypoxia, and respiratory distress.
  • Improve precision in airway management techniques and maintaining airway patency.
  • Receive actionable feedback on technique accuracy, response time, and minimizing complications in airway management.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Bioprocess Engineering and Scale-Up

Explore the principles of scaling up bioprocesses from lab-scale experiments to industrial production with immersive XR simulations. Enhance your understanding of bioreactor control, optimize large-scale production conditions for biologics, vaccines, and therapeutic compounds, and maintain product quality across different production scales.

Fluid Mechanics and Computational Fluid Dynamics (CFD)

Teach students the principles of fluid dynamics through immersive XR simulations and hands-on practice with Computational Fluid Dynamics (CFD). Virtual scenarios allow students to simulate fluid flow in pipes, pumps, valves, and aerodynamic surfaces, offering a deep dive into the behavior of fluids in different environments. Students will use interactive tools to set up boundary conditions, generate meshes, and analyze flow patterns using CFD software. Real-time feedback focuses on improving flow efficiency, managing pressure drop, understanding turbulence, and optimizing design solutions.

Wind Tunnel Testing and Aerodynamic Optimization

Gain hands-on experience in wind tunnel testing to study the aerodynamic behavior of aircraft models and optimize designs for improved flight performance. Using virtual wind tunnel environments, students will explore how lift, drag, and flow separation are affected by various aerodynamic factors. With interactive tools, they can adjust test conditions like wind speed, angle of attack, and turbulence levels, while receiving feedback on optimizing wing and fuselage shapes for maximum efficiency.

Tool Usage and Aircraft Maintenance Techniques

Explore the effective use of advanced tools and techniques in XR-powered aviation maintenance simulations, enhancing precision and efficiency in real-world tasks.

Protein Engineering and Biochemistry

Train students in essential techniques for protein expression, purification, and analysis, with immersive XR experiences to explore biotechnology applications. Focus on recombinant protein expression, purification methods, and enzyme activity analysis, along with designing proteins with improved properties through interactive virtual labs.

Geotechnical Engineering and Soil Mechanics

This XR simulation provides students with hands-on training in soil analysis, foundation design, and geotechnical investigation techniques. Virtual soil testing labs allow students to perform essential tests such as the Standard Penetration Test (SPT), Cone Penetration Test (CPT), and triaxial shear tests. The simulation includes interactive scenarios for designing shallow and deep foundations, retaining walls, and methods for slope stabilization. Students receive feedback on soil classification, bearing capacity, settlement predictions, and foundation stability to ensure they understand the fundamental principles of geotechnical engineering.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top