imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Calibrate and align flight control surfaces for seamless aircraft maneuverability.
  • Adjust control cables, linkages, and hydraulic actuators to meet performance standards.
  • Perform tension balancing and ensure smooth operation of control systems.
  • Diagnose and resolve alignment and response issues in flight control mechanisms.
  • Enhance technical skills in maintaining the integrity and reliability of control surfaces.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Advanced Welding Techniques (Exotic Metals and Alloys)

The Advanced Welding Techniques (Exotic Metals and Alloys) Simulation provides experience in welding high-performance materials like titanium, Inconel, and other exotic alloys. It offers virtual practice in welding materials that require specialized techniques due to their heat sensitivity, oxidation tendencies, and high strength. Students adjust welding settings, gas flow, and filler materials to meet the unique needs of these advanced metals. Feedback is provided on weld quality, material integrity, and the specific welding methods required for working with these materials.

Arterial Blood Gas (ABG) Interpretation

Enhance students' skills in interpreting arterial blood gas (ABG) results with immersive XR simulations. Students will analyze ABG values, identify imbalances, and understand their clinical implications for patient care.

Airflow and Duct Design Simulation

The Airflow and Duct Design Simulation trains students in calculating airflow requirements and designing ducts to ensure HVAC systems operate efficiently. The simulation features virtual tools for calculating airflow based on building dimensions and heating/cooling loads. Students engage in interactive duct design exercises, where they size ducts, select materials, and place vents for optimal airflow. Real-time feedback is provided on pressure loss, air distribution efficiency, and adherence to industry standards.

Electrical Panel and Breaker Installation

Learn the process of installing electrical panels and breakers in residential, commercial, and industrial systems. Through virtual simulations, students will design and install electrical panels, wire breakers, and ensure the correct distribution of electrical loads. They will practice the proper techniques for panel installation, breaker selection, and safety measures while receiving feedback on system functionality and code compliance.

Product Lifecycle Management (PLM)

This XR simulation teaches students about the comprehensive processes involved in managing a product's lifecycle, from initial conception through design, development, production, and eventual retirement. Virtual tools allow students to coordinate product design, development, production, and sustainability, integrating CAD, CAM, and data management into the development cycle. Students will interact with real-world scenarios to optimize project timelines, resource allocation, and overall product lifecycle efficiency. Feedback is provided on their decisions related to production costs, environmental impact, and product sustainability.

Material Science and Mechanical Properties Analysis

Introduce students to material properties, testing methods, and their applications in mechanical engineering through XR simulations. Students will engage in virtual material testing labs where they perform various tests such as tensile tests, hardness tests, impact tests, and fatigue analysis. The simulation includes interactive lessons on material properties like strength, ductility, toughness, and elasticity. Real-time feedback will help students understand material selection, suitability for specific applications, and how to optimize design for enhanced performance.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top