imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the design and function of artificial organs and implants in medical applications.
  • Explore the process of implanting and integrating artificial organs into the human body.
  • Analyze the performance of implants and artificial organs in virtual patients.
  • Learn to troubleshoot and optimize the function of artificial organs and implants.
  • Receive feedback on device performance, biocompatibility, and integration into patient systems.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

HVAC System Maintenance Simulation

The HVAC System Maintenance Simulation provides training on routine HVAC maintenance, including system cleaning, filter replacement, and component checks. Students perform virtual maintenance tasks such as changing air filters, cleaning condenser coils, and checking refrigerant levels. Interactive scenarios allow students to inspect electrical components, belts, motors, and thermostats for signs of wear or malfunction. Real-time feedback is given on maintenance efficiency, system condition, and preventive measures to avoid future breakdowns.

Residential Electrical Systems Simulation

Familiarize students with the design, installation, and maintenance of residential electrical systems. Through virtual simulations, students will install wiring for outlets, lighting, and breakers in a virtual house, practicing the principles and safety protocols involved in residential electrical systems. Scenarios will cover National Electrical Code (NEC) requirements, with real-time feedback on adherence to safety standards and proper installation techniques.

Machine Maintenance and Troubleshooting

Engage in XR-driven simulations for machine maintenance, lubrication, and troubleshooting. Students will virtually perform preventive maintenance tasks such as oiling, cleaning, and inspecting machines for wear. Interactive scenarios will guide them through diagnosing and resolving common machining issues like chatter, tool breakage, misalignment, and poor surface finish. Real-time feedback on maintenance quality, machine performance, and troubleshooting accuracy helps refine their skills in maintaining and optimizing machine functionality.

Earthquake Engineering and Seismic Analysis

Explore the principles of designing earthquake-resistant structures to mitigate seismic damage. Students can simulate seismic activities and observe their effects on various infrastructures, gaining practical insights into structural behavior. Interactive lessons focus on implementing base isolation, dampers, and reinforced materials to enhance structural resilience. Feedback provides guidance on safety compliance, performance optimization, and effective design techniques for seismic resistance.

Rocket Propulsion and Launch Systems

Explore the principles of rocket propulsion and the dynamics of launch systems through XR-powered simulations. Students engage in virtual rocket labs where they design and analyze rocket engines, simulate propellant flow, and study thrust and trajectory. Interactive scenarios allow students to gain a deeper understanding of staging, ignition sequences, and flight stability during launch, with feedback provided on propulsion efficiency, fuel consumption, and optimization of launch trajectories.

Kinematics and Dynamics of Machines

Train students in analyzing the motion and dynamics of mechanical systems and linkages using immersive XR simulations. Students will interact with virtual models of mechanisms such as gears, cams, pulleys, and crankshafts to observe and study their movement. The simulation offers interactive lessons on calculating velocities, accelerations, forces, and torques within mechanical linkages, with real-time feedback. The system will help students understand how to evaluate and optimize the efficiency of machines, force transmission, and performance.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top