imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the design and function of artificial organs and implants in medical applications.
  • Explore the process of implanting and integrating artificial organs into the human body.
  • Analyze the performance of implants and artificial organs in virtual patients.
  • Learn to troubleshoot and optimize the function of artificial organs and implants.
  • Receive feedback on device performance, biocompatibility, and integration into patient systems.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Residential Electrical Systems Simulation

Familiarize students with the design, installation, and maintenance of residential electrical systems. Through virtual simulations, students will install wiring for outlets, lighting, and breakers in a virtual house, practicing the principles and safety protocols involved in residential electrical systems. Scenarios will cover National Electrical Code (NEC) requirements, with real-time feedback on adherence to safety standards and proper installation techniques.

Renewable Energy Systems (Solar & Wind)

Learn how to install and maintain renewable energy systems, including solar photovoltaic (PV) systems and wind turbines. Through virtual simulations, students will install solar panels, inverters, and battery systems in both residential and commercial settings. They will also practice wiring wind turbines and integrating them with grid systems or off-grid installations. Real-time feedback will be provided on energy generation efficiency, grid tie-in, and troubleshooting renewable energy systems.

Medical Device Design and Prototyping

Immerse students in the principles of medical device design, prototyping, and testing with a cutting-edge XR-powered simulation. Through virtual scenarios, learners can design devices such as prosthetics, implants, diagnostic tools, and wearables, create interactive 3D models, and simulate their functionality, durability, and compliance with regulatory standards.

Mechanical System Design and Optimization

Enable students to design and optimize complex mechanical systems through XR simulations. The simulation offers virtual scenarios where students can create and refine mechanical systems like engines, HVAC systems, turbines, and gearboxes. They will use interactive tools to adjust system parameters, reduce weight, improve efficiency, and lower production costs. Real-time feedback will guide students on design constraints, feasibility, and cost-effectiveness, helping them develop the skills to optimize mechanical systems for peak performance.

Electrical Systems and Control Wiring

The Electrical Systems and Control Wiring Simulation trains users in installing and troubleshooting electrical wiring and control systems in HVAC units. The simulation allows virtual practice with wiring components such as compressors, fans, motors, and thermostats. Interactive scenarios provide troubleshooting experience with common electrical issues like faulty wiring, blown fuses, and tripped breakers. Real-time feedback focuses on wiring accuracy, electrical load, and system functionality.

Cardiovascular Devices and Hemodynamics Simulation

Train students in the design and analysis of cardiovascular devices with a focus on hemodynamics and fluid flow through immersive XR simulations. Students will simulate blood flow dynamics and design key devices like stents, heart valves, pacemakers, and vascular grafts, optimizing performance and minimizing complications.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top