imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the design and function of artificial organs and implants in medical applications.
  • Explore the process of implanting and integrating artificial organs into the human body.
  • Analyze the performance of implants and artificial organs in virtual patients.
  • Learn to troubleshoot and optimize the function of artificial organs and implants.
  • Receive feedback on device performance, biocompatibility, and integration into patient systems.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Trim Work and Finish Carpentry

The Trim Work and Finish Carpentry Simulation trains students in advanced woodworking techniques such as installing trim, baseboards, crown molding, and other intricate details commonly used in carpentry finishing. Virtual scenarios allow students to practice cutting, fitting, and installing trim and moldings around windows, doors, and walls. The simulation includes tutorials on how to miter corners, join pieces, and securely attach trim using nails or adhesives.

Spacecraft Design and Orbital Mechanics

Dive into the design and analysis of spacecraft for space missions, focusing on key components like propulsion, thermal control, and communication systems. Use virtual tools to create satellites, space probes, and crewed spacecraft while mastering the principles of orbital mechanics. Learn to calculate orbital trajectories, understand gravitational effects, and simulate spacecraft maneuvering in space. Receive feedback on mission planning, fuel efficiency, and spacecraft stability in various orbits to optimize space exploration projects.

Vehicle Dynamics and Performance Analysis

Delve into the science of vehicle dynamics with this immersive XR simulation. Students can explore vehicle stability, handling, and ride comfort in various scenarios, analyzing how factors like acceleration, braking, and cornering affect overall vehicle performance. Using virtual simulations, students can test different vehicle configurations, suspension systems, tire mechanics, and aerodynamics to optimize design for real-world conditions.

Plant Biotechnology and Genetic Modification

Discover plant biotechnology and genetic modification through immersive XR simulations, focusing on breeding, genetic engineering, and crop improvement. Apply virtual labs to create genetically modified plants with enhanced traits, explore transformation techniques, and address ethical considerations in GMO development.

Electrical Circuits and Systems Simulation

Electrical Circuits and Systems Simulation provides students with the knowledge and skills to design, analyze, and troubleshoot electrical circuits, with a focus on mechatronic applications. Through interactive simulations of DC and AC circuits, students will work with components like resistors, capacitors, inductors, and diodes. Using virtual oscilloscope and multimeter tools, students will measure voltage, current, and resistance, while receiving real-time feedback on circuit functionality, power ratings, and potential faults.

Mechanics of Solids (Stress and Strain Analysis)

This XR simulation trains students to analyze stress and strain in solid objects subjected to various loading conditions. Virtual scenarios allow students to test mechanical components under tensile, compressive, shear, and torsional loads. Interactive lessons focus on calculating stress concentration factors, deflections, and material deformation, providing essential insights into the behavior of materials under stress. Students receive feedback on structural integrity, safety factors, and failure analysis to ensure optimal design and material selection.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top