imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn to install and program Building Automation Systems (BAS) to manage HVAC, lighting, and other building systems.
  • Gain proficiency in configuring smart thermostats, sensors, and devices for automated system control.
  • Understand how to optimize energy efficiency through BAS and smart HVAC integration.
  • Develop troubleshooting skills for diagnosing and resolving issues in networked building systems.
  • Analyze system efficiency and energy consumption, making recommendations for improvements.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Servo Motor and Stepper Motor Control

Explore the use and control of servo motors and stepper motors in precision control applications. Through virtual simulations, students can set up and fine-tune motor control circuits, adjusting parameters such as speed, torque, and position. Real-time feedback on control accuracy, performance optimization, and motor troubleshooting enhances understanding and hands-on learning.

Drainage, Waste, and Vent (DWV) System Installation

Familiarize with Drainage, Waste, and Vent (DWV) systems essential for removing wastewater and preventing sewer gases from entering buildings. In this simulation, the virtual installation of drainage pipes, waste stacks, and vent pipes in various building types is explored. Proper pipe sloping for efficient drainage and venting is practiced, with real-time feedback on system functionality, code compliance, and troubleshooting clogs or vent issues. XR technology enhances the experience, offering immersive and interactive learning.

Cardiovascular Devices and Hemodynamics Simulation

Train students in the design and analysis of cardiovascular devices with a focus on hemodynamics and fluid flow through immersive XR simulations. Students will simulate blood flow dynamics and design key devices like stents, heart valves, pacemakers, and vascular grafts, optimizing performance and minimizing complications.

Patient Assessment and Vital Signs Monitoring

The "Patient Assessment and Vital Signs Monitoring" module equips students with the essential skills to perform comprehensive patient assessments and monitor vital signs effectively. Through immersive virtual scenarios and interactive tutorials, learners will interact with virtual patients to measure and analyze critical health parameters, assess symptoms, and make informed clinical decisions. Real-time feedback ensures accuracy and reinforces data interpretation for improved clinical judgment.

Sustainability and Energy Efficiency in Mechatronics

Explore the principles of sustainable mechatronics design, with a focus on energy efficiency and resource management. Through virtual simulations, students will analyze the energy consumption of various mechatronic systems and processes, engage in interactive scenarios to optimize systems for energy efficiency, reduce waste, and improve sustainability. Real-time feedback on energy usage, cost savings, and environmental impact helps students refine their design choices for maximum sustainability.

Pavement Design and Analysis (XR)

Explore the principles of designing durable and efficient pavements for roads, highways, and airfields. Students can engage in virtual scenarios to design flexible and rigid pavement layers, select materials, and analyze the effects of traffic loads. Interactive tools guide them in determining pavement thickness, stress distribution, and conducting life cycle analyses. Feedback emphasizes durability, cost optimization, and long-term maintenance strategies.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top