imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Explore CNC programming by writing G-code to control machine movements and toolpaths using XR simulations.
  • Enhance skills in programming CNC lathes, mills, and routers for operations such as contouring, pocketing, and drilling.
  • Practice optimizing toolpath accuracy and machining efficiency through interactive CNC scenarios.
  • Receive real-time feedback on part quality, programming accuracy, and overall machining precision.
  • Develop troubleshooting skills for identifying and correcting CNC programming errors to ensure high-quality production.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Structural Dynamics and Vibration Analysis

Delve into the analysis and mitigation of vibrations in aerospace structures to enhance safety and performance. This XR-enabled simulation provides students with virtual scenarios where they can study vibration patterns in aircraft and spacecraft structures using modal analysis techniques. Interactive lessons on damping, frequency response, and resonance reduction in critical components empower students to optimize the structural integrity of aerospace systems.

Artificial Organs and Implants Simulation

Enhance students' understanding of artificial organs and implants through immersive XR simulations. Students will explore the design, function, and integration of artificial organs, including heart, kidney, and joint implants, and simulate their implantation and performance in virtual patients.

High Voltage Engineering and Insulation Systems

The High Voltage Engineering and Insulation Systems module offers virtual training on high-voltage systems, focusing on insulation techniques and breakdown phenomena. Through interactive simulations, students explore the design, operation, and safety considerations of high-voltage equipment, ensuring optimal performance and reliability.

Magnetic Resonance Imaging (MRI) Overview

Explore the fundamentals of Magnetic Resonance Imaging (MRI) techniques and their critical role in radiography, supported by immersive XR-based simulations.

Robotics and Unmanned Aerial Vehicles (UAVs)

Explore the world of designing, building, and controlling Unmanned Aerial Vehicles (UAVs) and aerospace robotics for autonomous flight. In this simulation, students will gain hands-on experience by programming UAVs for specific missions, including navigation, obstacle avoidance, and data collection. Using XR-enabled environments, students will interact with drone dynamics, sensor integration, and flight path optimization techniques, while receiving valuable feedback on UAV stability, control responses, and overall mission performance.

Hybrid and Alternative Fuel Technologies

Hybrid and Alternative Fuel Technologies provides an in-depth exploration of hybrid vehicle systems and alternative fuel technologies, including hydrogen, compressed natural gas (CNG), and biofuels. Through XR-based simulations, students will study the operation and integration of hybrid powertrains, energy storage systems, and alternative fuel tanks. The course emphasizes designing fuel-efficient vehicles using alternative energy sources to reduce carbon emissions.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top