imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Explore CNC programming by writing G-code to control machine movements and toolpaths using XR simulations.
  • Enhance skills in programming CNC lathes, mills, and routers for operations such as contouring, pocketing, and drilling.
  • Practice optimizing toolpath accuracy and machining efficiency through interactive CNC scenarios.
  • Receive real-time feedback on part quality, programming accuracy, and overall machining precision.
  • Develop troubleshooting skills for identifying and correcting CNC programming errors to ensure high-quality production.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Advanced Machining Techniques (5-Axis Machining, EDM)

Explore XR-driven simulations of advanced machining techniques such as 5-axis machining and Electrical Discharge Machining (EDM). Students will virtually operate 5-axis machining centers to perform multi-axis operations on intricate parts and use EDM to machine hard materials with high precision. These simulations provide valuable hands-on experience in mastering advanced manufacturing processes. Feedback on part complexity, machining accuracy, and process optimization helps refine skills.

Yield Optimization and Defect Reduction

Explore yield optimization and defect reduction through interactive XR simulations. Analyze manufacturing data, address common defects like contamination and etching errors, and implement strategies to improve process efficiency, product yield, and defect minimization.

Patient Assessment and Pulmonary Function Testing

Empower students to explore and master comprehensive respiratory assessments and pulmonary function testing through innovative XR simulations. Students will engage with virtual scenarios to assess lung sounds, measure respiratory rates, and perform tests like spirometry and blood gas analysis, enhancing their diagnostic skills.

Obstetric and Neonatal Care Simulation

The Obstetric and Neonatal Care Simulation module trains nursing students in essential obstetric and neonatal care skills through realistic virtual scenarios. Students gain hands-on experience in labor and delivery processes, fetal monitoring, neonatal assessments, and newborn resuscitation, ensuring safe and competent maternal and infant care during childbirth and postpartum.

Rocket Propulsion and Launch Systems

Explore the principles of rocket propulsion and the dynamics of launch systems through XR-powered simulations. Students engage in virtual rocket labs where they design and analyze rocket engines, simulate propellant flow, and study thrust and trajectory. Interactive scenarios allow students to gain a deeper understanding of staging, ignition sequences, and flight stability during launch, with feedback provided on propulsion efficiency, fuel consumption, and optimization of launch trajectories.

Vibration Analysis and Mechanical Resonance

This XR simulation enables students to analyze vibration patterns and mechanical resonance in rotating and reciprocating systems. They will interact with virtual scenarios where they can examine vibration frequencies, amplitudes, and damping within mechanical structures. The simulation guides students through detecting resonance, identifying sources of vibration, and implementing solutions to reduce noise and wear. Real-time feedback will focus on vibration analysis, system stability, and reliability, providing students with the skills to ensure the durability and optimal performance of mechanical systems.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top