imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the key principles of semiconductor cleanroom operations, including cleanliness standards and contamination control.
  • Explore virtual environments to navigate and operate within cleanroom settings while following essential guidelines.
  • Participate in interactive tutorials to practice wearing personal protective equipment (PPE), such as gowns, gloves, face masks, and shoe covers.
  • Receive real-time guidance to ensure proper donning and doffing techniques, maintaining the integrity of the cleanroom environment.
  • Receive instant feedback on following cleanroom protocols, including proper entry/exit procedures and workstation cleanliness.
  • Develop an understanding of semiconductor manufacturing standards, ensuring compliance with industry requirements and best practices.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Medical Imaging Techniques

Enhance students' understanding of medical imaging techniques such as MRI, CT, ultrasound, and X-ray through immersive XR simulations. This interactive platform allows students to control virtual imaging equipment, visualize real-time results, and interpret medical images to identify anatomical structures and diagnose conditions effectively.

Trauma Management and Injury Stabilization

Equip students with the skills needed to manage trauma patients through immersive XR simulations. Students will practice controlling bleeding, stabilizing fractures, and preventing shock in a variety of trauma scenarios, such as car accidents, falls, and gunshot wounds.

Vehicle Dynamics and Performance Analysis

Delve into the science of vehicle dynamics with this immersive XR simulation. Students can explore vehicle stability, handling, and ride comfort in various scenarios, analyzing how factors like acceleration, braking, and cornering affect overall vehicle performance. Using virtual simulations, students can test different vehicle configurations, suspension systems, tire mechanics, and aerodynamics to optimize design for real-world conditions.

Post-Surgical Care and Wound Management

Teach students how to assist in post-surgical care, including wound management and supporting patient recovery using XR technology. Virtual scenarios will guide students through the proper techniques for caring for post-operative wounds, such as cleaning, dressing, and monitoring for infection. Additionally, students will learn how to safely transfer patients from the OR to the recovery room, with real-time feedback on patient care protocols, monitoring vitals, and recognizing potential complications.

Propulsion Systems and Engine Design

Immerse yourself in the world of propulsion systems with an in-depth exploration of jet engines, rockets, and electric propulsion systems. Through virtual labs, gain hands-on experience in analyzing key engine components, including compressors, turbines, combustion chambers, and nozzles. Engage with interactive simulations that simulate fuel efficiency, thrust generation, and thermal management in propulsion systems, while optimizing engine performance for various operational conditions.

Drug Delivery Systems and Microfluidics

Empower students to master the design and function of drug delivery systems with a focus on microfluidic devices for precise medication administration. Through immersive simulations, students will design and test microfluidic devices, optimizing fluid dynamics and dosage control for various medical conditions.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top