imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the key principles of semiconductor cleanroom operations, including cleanliness standards and contamination control.
  • Explore virtual environments to navigate and operate within cleanroom settings while following essential guidelines.
  • Participate in interactive tutorials to practice wearing personal protective equipment (PPE), such as gowns, gloves, face masks, and shoe covers.
  • Receive real-time guidance to ensure proper donning and doffing techniques, maintaining the integrity of the cleanroom environment.
  • Receive instant feedback on following cleanroom protocols, including proper entry/exit procedures and workstation cleanliness.
  • Develop an understanding of semiconductor manufacturing standards, ensuring compliance with industry requirements and best practices.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Patient Preparation and Draping Simulation

Train students on proper patient preparation and draping techniques to maintain a sterile field and ensure patient safety before surgery.

Machining Materials and Tool Selection

Provide hands-on training in selecting and machining various materials, including steel, aluminum, brass, and plastics. Through virtual XR simulations, students will match materials with the correct cutting tools based on hardness, toughness, and machinability. They will practice adjusting cutting parameters, like speed, feed rates, and depth of cut, ensuring optimal performance and longevity of tools in real-time machining scenarios. This immersive experience will help students understand material behavior and improve machining efficiency in both manual and CNC operations.

Mechanics of Solids (Stress and Strain Analysis)

This XR simulation trains students to analyze stress and strain in solid objects subjected to various loading conditions. Virtual scenarios allow students to test mechanical components under tensile, compressive, shear, and torsional loads. Interactive lessons focus on calculating stress concentration factors, deflections, and material deformation, providing essential insights into the behavior of materials under stress. Students receive feedback on structural integrity, safety factors, and failure analysis to ensure optimal design and material selection.

Automotive Electronics and Control Systems

Delve into the realm of advanced automotive electronics, focusing on the integration of sensors, actuators, and electronic control units (ECUs). This XR-enabled module combines immersive environments with interactive tools to provide hands-on experience in designing and optimizing vehicle electronic systems.

Opening and Closing Manholes

Explore best practices for safely and efficiently opening and closing manholes using XR technology to simulate real-world scenarios.

Building Automation Systems (BAS) and Smart HVAC

The Building Automation Systems (BAS) and Smart HVAC Simulation equips students with skills in installing and programming BAS to control HVAC systems, lighting, and other building systems in large commercial buildings. Students will engage in virtual scenarios to set up and program BAS systems, optimize energy use, and monitor the indoor climate. Interactive exercises will involve configuring smart thermostats, sensors, and networked devices for automated temperature and airflow control. Real-time feedback will focus on system efficiency, energy consumption, and troubleshooting networked components.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top