imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the principles of calibrating and maintaining clinical equipment.
  • Gain practical experience in troubleshooting and optimizing devices like ventilators and ECG machines.
  • Learn to identify technical issues and replace parts to restore equipment functionality.
  • Apply best practices to ensure equipment reliability and adherence to safety standards.
  • Receive real-time feedback on troubleshooting skills and calibration accuracy.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Electrostatic Discharge (ESD) Prevention Simulation

Learn how to prevent Electrostatic Discharge (ESD) damage through interactive XR simulations. Understand the critical measures required to protect sensitive semiconductor devices during fabrication, handling, and packaging processes.

Failure Mode and Effects Analysis (FMEA) Simulation

Gain expertise in Failure Mode and Effects Analysis (FMEA) through immersive XR simulations. Learn to systematically identify, assess, and mitigate potential failure points in semiconductor manufacturing processes to enhance reliability and quality.

Material Science and Mechanical Properties Analysis

Introduce students to material properties, testing methods, and their applications in mechanical engineering through XR simulations. Students will engage in virtual material testing labs where they perform various tests such as tensile tests, hardness tests, impact tests, and fatigue analysis. The simulation includes interactive lessons on material properties like strength, ductility, toughness, and elasticity. Real-time feedback will help students understand material selection, suitability for specific applications, and how to optimize design for enhanced performance.

Spacecraft Design and Orbital Mechanics

Dive into the design and analysis of spacecraft for space missions, focusing on key components like propulsion, thermal control, and communication systems. Use virtual tools to create satellites, space probes, and crewed spacecraft while mastering the principles of orbital mechanics. Learn to calculate orbital trajectories, understand gravitational effects, and simulate spacecraft maneuvering in space. Receive feedback on mission planning, fuel efficiency, and spacecraft stability in various orbits to optimize space exploration projects.

Electrical Panel and Breaker Installation

Learn the process of installing electrical panels and breakers in residential, commercial, and industrial systems. Through virtual simulations, students will design and install electrical panels, wire breakers, and ensure the correct distribution of electrical loads. They will practice the proper techniques for panel installation, breaker selection, and safety measures while receiving feedback on system functionality and code compliance.

Vibration Analysis and Mechanical Resonance

This XR simulation enables students to analyze vibration patterns and mechanical resonance in rotating and reciprocating systems. They will interact with virtual scenarios where they can examine vibration frequencies, amplitudes, and damping within mechanical structures. The simulation guides students through detecting resonance, identifying sources of vibration, and implementing solutions to reduce noise and wear. Real-time feedback will focus on vibration analysis, system stability, and reliability, providing students with the skills to ensure the durability and optimal performance of mechanical systems.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top