imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the principles behind drug delivery systems and microfluidic technology.
  • Design and test microfluidic devices for controlled drug administration.
  • Analyze fluid dynamics and optimize dosage control for targeted medical applications.
  • Learn to troubleshoot and refine drug delivery methods for patient safety and efficacy.
  • Receive feedback on system precision, delivery efficiency, and safety standards.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Etching and Deposition Techniques

Gain practical experience in etching and deposition, essential steps in semiconductor fabrication, through immersive XR simulations. Explore virtual labs that simulate dry and wet etching, along with deposition methods like CVD and PVD, with interactive controls and real-time feedback.

Transformer Installation and Testing

Gain hands-on experience in installing and testing electrical transformers for power distribution. In this simulation, students will virtually install step-up and step-down transformers in industrial and commercial settings. They will practice testing transformer windings, polarity, and voltage using virtual testing equipment. Real-time feedback will be provided on transformer selection, installation safety, and testing accuracy.

Thermodynamics and Heat Transfer

Provide hands-on experience in understanding thermodynamic processes and heat transfer mechanisms through immersive XR simulations. Virtual labs enable students to simulate processes like conduction, convection, and radiation across various materials and environments. Interactive scenarios allow exploration of thermodynamic cycles, such as the Rankine, Brayton, and Carnot cycles, offering a comprehensive understanding of energy systems. Real-time feedback helps students analyze temperature distribution, energy efficiency, and system optimization, fostering practical insights into thermodynamics and heat transfer in engineering applications.

Failure Mode and Effects Analysis (FMEA) Simulation

Gain expertise in Failure Mode and Effects Analysis (FMEA) through immersive XR simulations. Learn to systematically identify, assess, and mitigate potential failure points in semiconductor manufacturing processes to enhance reliability and quality.

Medical Imaging Techniques

Enhance students' understanding of medical imaging techniques such as MRI, CT, ultrasound, and X-ray through immersive XR simulations. This interactive platform allows students to control virtual imaging equipment, visualize real-time results, and interpret medical images to identify anatomical structures and diagnose conditions effectively.

Product Lifecycle Management (PLM)

This XR simulation teaches students about the comprehensive processes involved in managing a product's lifecycle, from initial conception through design, development, production, and eventual retirement. Virtual tools allow students to coordinate product design, development, production, and sustainability, integrating CAD, CAM, and data management into the development cycle. Students will interact with real-world scenarios to optimize project timelines, resource allocation, and overall product lifecycle efficiency. Feedback is provided on their decisions related to production costs, environmental impact, and product sustainability.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top