imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the principles of kinematics and dynamics as they apply to mechanical systems and linkages, including gears, cams, pulleys, and crankshafts.
  • Learn how to calculate and analyze key parameters such as velocity, acceleration, force, and torque within mechanical systems.
  • Gain hands-on experience using XR simulations to study the motion of various mechanical components in action.
  • Evaluate the efficiency of different mechanical systems and identify opportunities for performance optimization.
  • Develop the ability to analyze and optimize force transmission across machine linkages for improved system functionality and performance.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Thermodynamics and Heat Transfer

Provide hands-on experience in understanding thermodynamic processes and heat transfer mechanisms through immersive XR simulations. Virtual labs enable students to simulate processes like conduction, convection, and radiation across various materials and environments. Interactive scenarios allow exploration of thermodynamic cycles, such as the Rankine, Brayton, and Carnot cycles, offering a comprehensive understanding of energy systems. Real-time feedback helps students analyze temperature distribution, energy efficiency, and system optimization, fostering practical insights into thermodynamics and heat transfer in engineering applications.

Refrigerant Handling and Charging Simulation

The Refrigerant Handling and Charging Simulation provides training on safely handling refrigerants, charging HVAC systems, and recovering refrigerants in compliance with EPA regulations. The simulation features virtual scenarios where students select the appropriate refrigerant types, connect service gauges, and monitor pressures during the charging process. Interactive exercises on refrigerant recovery allow students to practice safe recovery techniques before repairs or replacements. Real-time feedback is provided on refrigerant levels, system pressures, and adherence to EPA regulations for proper refrigerant handling.

Structural Analysis and Finite Element Analysis (FEA)

Explore the principles of structural analysis and the application of Finite Element Analysis (FEA) to evaluate and optimize engineering designs.

Immunology and Vaccine Development

Explore the principles of immunology and the development of vaccines and therapeutic antibodies through immersive XR experiences. Enhance understanding of immune responses, antigen-antibody interactions, and the design of immunotherapies with virtual labs and interactive tutorials.

Suspension Systems and Ride Comfort Analysis

Suspension Systems and Ride Comfort Analysis focuses on the design and tuning of automotive suspension systems to achieve optimal ride quality and handling. Students will engage in virtual scenarios to adjust suspension components such as shock absorbers, springs, control arms, and anti-roll bars. The course includes interactive lessons on suspension geometry, damping characteristics, and vehicle stability, with feedback on ride comfort, handling precision, and minimizing road vibrations.

Pavement Design and Analysis (XR)

Explore the principles of designing durable and efficient pavements for roads, highways, and airfields. Students can engage in virtual scenarios to design flexible and rigid pavement layers, select materials, and analyze the effects of traffic loads. Interactive tools guide them in determining pavement thickness, stress distribution, and conducting life cycle analyses. Feedback emphasizes durability, cost optimization, and long-term maintenance strategies.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top