imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the principles of kinematics and dynamics as they apply to mechanical systems and linkages, including gears, cams, pulleys, and crankshafts.
  • Learn how to calculate and analyze key parameters such as velocity, acceleration, force, and torque within mechanical systems.
  • Gain hands-on experience using XR simulations to study the motion of various mechanical components in action.
  • Evaluate the efficiency of different mechanical systems and identify opportunities for performance optimization.
  • Develop the ability to analyze and optimize force transmission across machine linkages for improved system functionality and performance.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Biomaterials and Tissue Engineering

Immerse students in the properties and applications of biomaterials used in implants, prosthetics, and tissue engineering through innovative virtual labs. Students will interact with biomaterials like polymers, ceramics, metals, and composites, and design tissue scaffolds for regenerative medicine, enhancing their understanding of material selection and biocompatibility.

Electrical Wiring Installation Simulation

Learn the proper techniques for installing electrical wiring systems in residential, commercial, and industrial buildings. Through interactive simulations, students will design and install wiring for lighting, outlets, and appliances, practicing wire connections, cable selection, and securing wiring in conduits or walls. Real-time feedback will be provided on wiring accuracy, code compliance, and safety measures to ensure best practices in electrical installations.

Rocket Propulsion and Launch Systems

Explore the principles of rocket propulsion and the dynamics of launch systems through XR-powered simulations. Students engage in virtual rocket labs where they design and analyze rocket engines, simulate propellant flow, and study thrust and trajectory. Interactive scenarios allow students to gain a deeper understanding of staging, ignition sequences, and flight stability during launch, with feedback provided on propulsion efficiency, fuel consumption, and optimization of launch trajectories.

Mechanical Systems Design and Integration

Mechanical Systems Design and Integration offers hands-on experience in designing and integrating mechanical systems with electrical components and sensors. Students will engage in virtual assembly of mechanical systems, such as gears, motors, and actuators, while integrating sensors and control systems to automate processes. Real-time feedback on system performance, including power consumption, efficiency, and alignment, provides students with valuable insights to optimize designs and improve functionality.

Sustainability and Energy Efficiency in Mechatronics

Explore the principles of sustainable mechatronics design, with a focus on energy efficiency and resource management. Through virtual simulations, students will analyze the energy consumption of various mechatronic systems and processes, engage in interactive scenarios to optimize systems for energy efficiency, reduce waste, and improve sustainability. Real-time feedback on energy usage, cost savings, and environmental impact helps students refine their design choices for maximum sustainability.

Human Anatomy and Physiology Simulation

Provide an in-depth understanding of human anatomy and physiology with a focus on systems relevant to biomedical applications. Using immersive XR technology, students can explore and interact with virtual 3D models of the human body, gaining insights into organ systems, tissues, and cells and their implications for medical device design.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top