imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Analyze the impact of seismic forces on buildings, bridges, and other structures through virtual simulations.
  • Design earthquake-resistant structures using advanced techniques like base isolation and damping systems.
  • Explore material reinforcement strategies to improve structural integrity under seismic loads.
  • Evaluate structural safety standards and optimize designs for resilience.
  • Gain hands-on experience in mitigating earthquake damage through innovative design solutions.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Advanced Semiconductor Materials Simulation

Experience the properties, applications, and challenges of advanced semiconductor materials like Gallium Nitride (GaN) and Silicon Carbide (SiC) through immersive XR simulations, enabling hands-on understanding of cutting-edge materials.

Emergency Scene Management and Triage

Prepare students for emergency scene management and triage in high-pressure situations through XR simulations. Students will practice managing multi-casualty incidents, applying triage principles to prioritize patients, and coordinating with first responders to ensure efficient care delivery.

Control System Design and Tuning

Explore the design, simulation, and tuning of control systems for mechanical and electrical applications. Through interactive simulations, students will design feedback control systems using PID (Proportional-Integral-Derivative) controllers to regulate variables such as speed, temperature, or position. Real-time feedback will help students evaluate control system stability, response times, and error minimization for optimal system performance.

Manufacturing Processes Simulation

This XR simulation provides students with training on various manufacturing techniques such as machining, welding, casting, and 3D printing. Students will interact with virtual manufacturing environments, where they can operate CNC machines, 3D printers, and robotic assembly lines. The simulation includes interactive tutorials focused on optimizing production processes, generating toolpaths, and minimizing waste. Real-time feedback will help students assess manufacturing efficiency, material usage, and production quality, enabling them to enhance skills for modern manufacturing applications.

Drill Press Operation and Hole Machining

Train students in the safe and efficient operation of a drill press, including drilling, reaming, and tapping operations. Through XR simulations, students will practice drilling holes to precise specifications, adjusting speeds and selecting the right drill bits for different materials. The simulation will allow hands-on experience in workpiece alignment, tool selection, and achieving accurate hole dimensions. Real-time feedback will guide students on maintaining optimal drilling performance, improving hole quality, and mastering chip removal techniques.

Surface Grinding and Finishing

Explore XR-based simulations for surface grinding and finishing operations. Students will interact with virtual surface grinders, simulating grinding processes on different materials to achieve precise flatness and superior surface finishes. Through scenarios involving the selection of grinding wheels, feed adjustments, and optimal workpiece setups, users can refine their skills in precision grinding. Feedback is provided on surface finish quality, material removal rates, and grinding accuracy, allowing users to enhance their machining abilities.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top