imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Analyze the impact of seismic forces on buildings, bridges, and other structures through virtual simulations.
  • Design earthquake-resistant structures using advanced techniques like base isolation and damping systems.
  • Explore material reinforcement strategies to improve structural integrity under seismic loads.
  • Evaluate structural safety standards and optimize designs for resilience.
  • Gain hands-on experience in mitigating earthquake damage through innovative design solutions.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Advanced Machining Techniques (5-Axis Machining, EDM)

Explore XR-driven simulations of advanced machining techniques such as 5-axis machining and Electrical Discharge Machining (EDM). Students will virtually operate 5-axis machining centers to perform multi-axis operations on intricate parts and use EDM to machine hard materials with high precision. These simulations provide valuable hands-on experience in mastering advanced manufacturing processes. Feedback on part complexity, machining accuracy, and process optimization helps refine skills.

Fluid Mechanics and Computational Fluid Dynamics (CFD)

Teach students the principles of fluid dynamics through immersive XR simulations and hands-on practice with Computational Fluid Dynamics (CFD). Virtual scenarios allow students to simulate fluid flow in pipes, pumps, valves, and aerodynamic surfaces, offering a deep dive into the behavior of fluids in different environments. Students will use interactive tools to set up boundary conditions, generate meshes, and analyze flow patterns using CFD software. Real-time feedback focuses on improving flow efficiency, managing pressure drop, understanding turbulence, and optimizing design solutions.

Infection Control and Isolation Precautions

Enhance infection control and isolation techniques to prevent the spread of respiratory infections like pneumonia and tuberculosis. This immersive training provides students with hands-on experience in using PPE, following hygiene protocols, and managing infection control procedures.

Anatomy and Physiology Review

Reinforce students' understanding of human anatomy, with a focus on structures relevant to surgery, through immersive XR technology. Virtual 3D models of the human body allow students to explore, manipulate, and interact with anatomical structures. Interactive quizzes and exercises enhance learning by testing knowledge of critical organs, systems, and their relationships. Simulations will show how different surgical procedures affect the body’s anatomical structures, bridging theory with practical application.

Medication Administration and Dosage Calculations

Prepare students for accurate medication administration, focusing on dosage calculations, routes of administration, and preventing medication errors through XR simulations. Students will practice preparing and administering medications via various routes, including IV, IM, and SC, while ensuring precise dosage calculations.

CAM (Computer-Aided Manufacturing) Integration

Explore XR-driven CAM (Computer-Aided Manufacturing) software simulations to teach students how to generate toolpaths for CNC machining. Students will virtually import 3D models, set up machining operations, and create G-code for CNC machines. Interactive lessons guide them through toolpath creation, cutting strategies, and simulating machining operations. Feedback on toolpath efficiency, machining time, and material removal helps refine their CAM and CNC programming skills.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top