imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the installation process for various lighting systems, including incandescent, fluorescent, and LED lighting, in both residential and commercial settings.
  • Practice installing lighting circuits, switches, and dimmers with virtual tools and techniques.
  • Troubleshoot common lighting system issues, such as flickering, burned-out bulbs, and short circuits, using virtual scenarios.
  • Evaluate the energy efficiency of different lighting systems and optimize circuit load for reliability.
  • Receive feedback on lighting system performance, energy consumption, and troubleshooting approaches to enhance technical proficiency.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Failure Mode and Effects Analysis (FMEA) Simulation

Gain expertise in Failure Mode and Effects Analysis (FMEA) through immersive XR simulations. Learn to systematically identify, assess, and mitigate potential failure points in semiconductor manufacturing processes to enhance reliability and quality.

Computed Tomography (CT) Simulation

Train students on the operation of CT scanners, patient positioning, and the interpretation of generated images, enhanced with XR-based simulations for hands-on learning.

CAM (Computer-Aided Manufacturing) Integration

Explore XR-driven CAM (Computer-Aided Manufacturing) software simulations to teach students how to generate toolpaths for CNC machining. Students will virtually import 3D models, set up machining operations, and create G-code for CNC machines. Interactive lessons guide them through toolpath creation, cutting strategies, and simulating machining operations. Feedback on toolpath efficiency, machining time, and material removal helps refine their CAM and CNC programming skills.

Geospatial Analysis and Remote Sensing

Explore the power of remote sensing technology and its application in civil engineering projects. Analyze satellite imagery and aerial photographs to map terrain, plan land use, and track urban development. Use geospatial data tools to detect changes in natural resources, land features, and environmental conditions. Receive feedback on data accuracy, interpretation, and the practical integration of this information into infrastructure planning.

Robotics and Unmanned Aerial Vehicles (UAVs)

Explore the world of designing, building, and controlling Unmanned Aerial Vehicles (UAVs) and aerospace robotics for autonomous flight. In this simulation, students will gain hands-on experience by programming UAVs for specific missions, including navigation, obstacle avoidance, and data collection. Using XR-enabled environments, students will interact with drone dynamics, sensor integration, and flight path optimization techniques, while receiving valuable feedback on UAV stability, control responses, and overall mission performance.

Cardiac Rhythm Interpretation and EKG Analysis

Immerse students in the art of reading and interpreting EKG rhythms for diagnosing cardiac conditions in critical situations. Through XR simulations, students will explore abnormalities such as tachycardia, bradycardia, and arrhythmias, while gaining insights into EKG analysis and appropriate clinical interventions.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top