imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the installation process for various lighting systems, including incandescent, fluorescent, and LED lighting, in both residential and commercial settings.
  • Practice installing lighting circuits, switches, and dimmers with virtual tools and techniques.
  • Troubleshoot common lighting system issues, such as flickering, burned-out bulbs, and short circuits, using virtual scenarios.
  • Evaluate the energy efficiency of different lighting systems and optimize circuit load for reliability.
  • Receive feedback on lighting system performance, energy consumption, and troubleshooting approaches to enhance technical proficiency.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Environmental Engineering and Sustainability

This XR simulation equips students with knowledge and skills in waste management, pollution control, and sustainable design practices. Students engage in virtual scenarios to design water treatment plants, air pollution control systems, and waste recycling facilities. Interactive lessons emphasize evaluating the environmental impact of construction projects and applying green building practices. The simulation provides feedback on reducing carbon footprints, improving energy efficiency, and achieving sustainability goals.

Mechanics of Solids and Fluids

Equip students with the foundational knowledge of solid mechanics and fluid dynamics, key principles in engineering applications. This course focuses on understanding the behavior of solid materials under stress and strain, as well as the movement of fluids within various engineering systems. Students will explore how these principles interact to optimize structural designs and fluid-based systems.

Pneumatics and Hydraulics Simulation

Pneumatics and Hydraulics Simulation trains students in the operation and design of pneumatic and hydraulic systems, which are essential in many mechatronic applications. Through virtual simulations, students can design and control pneumatic and hydraulic circuits using components like valves, cylinders, pumps, and actuators. They will also control pressures and flow rates to perform tasks such as lifting, pressing, and clamping. Real-time feedback on system efficiency, fluid dynamics, and troubleshooting leaks or pressure issues enhances learning and system optimization.

Biomechanics and Motion Analysis

Explore the principles of biomechanics and motion analysis through immersive XR simulations. Students will analyze human movement, understand forces acting on the body, and assess the performance of musculoskeletal systems in dynamic environments, enhancing their ability to apply these concepts to health, sports, and rehabilitation.

Propulsion Systems and Engine Design

Immerse yourself in the world of propulsion systems with an in-depth exploration of jet engines, rockets, and electric propulsion systems. Through virtual labs, gain hands-on experience in analyzing key engine components, including compressors, turbines, combustion chambers, and nozzles. Engage with interactive simulations that simulate fuel efficiency, thrust generation, and thermal management in propulsion systems, while optimizing engine performance for various operational conditions.

Indoor Air Quality and Ventilation Systems

The Indoor Air Quality and Ventilation Systems Simulation teaches students how to design, install, and maintain systems that improve indoor air quality (IAQ) and ventilation. Virtual tools are provided for installing ventilation systems, such as air purifiers, dehumidifiers, and energy recovery ventilators (ERVs). Students engage in interactive exercises where they measure and control indoor humidity, carbon dioxide levels, and particulate matter. Real-time feedback is offered on ventilation efficiency, IAQ improvement, and system maintenance.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top