imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the fundamental properties of machining materials such as steel, aluminum, brass, and plastics.
  • Learn how to select the appropriate cutting tools based on material characteristics like hardness and machinability.
  • Gain practical experience in adjusting machining parameters (speed, feed rate, depth of cut) for different materials to optimize tool life and efficiency.
  • Explore the impact of material properties on cutting tool performance and wear through XR-based simulations.
  • Develop skills in troubleshooting machining challenges such as tool wear and material deformation during the cutting process.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Precision Measurement and Inspection

Explore the art of precision measurement and inspection using advanced tools such as micrometers, calipers, dial indicators, and gauges. This simulation allows users to virtually measure machined parts, ensuring that they meet strict dimensional tolerances. Learn how to read measurement instruments accurately, interpret technical drawings, and identify any deviations that could affect the quality of the part. With real-time feedback on measurement precision and inspection accuracy, users will gain the skills needed for quality control in manufacturing and machining processes.

Troubleshooting HVAC Systems

The Troubleshooting HVAC Systems Simulation teaches users how to troubleshoot common HVAC problems such as system malfunctions, low refrigerant, faulty components, and poor airflow. The simulation includes virtual diagnostic tools like multimeters, pressure gauges, and thermometers to test system components. Interactive fault scenarios guide students in diagnosing and repairing issues such as refrigerant leaks, compressor failures, and blocked filters. Real-time feedback is provided on problem diagnosis, repair accuracy, and system recovery.

CAM (Computer-Aided Manufacturing) Integration

Explore XR-driven CAM (Computer-Aided Manufacturing) software simulations to teach students how to generate toolpaths for CNC machining. Students will virtually import 3D models, set up machining operations, and create G-code for CNC machines. Interactive lessons guide them through toolpath creation, cutting strategies, and simulating machining operations. Feedback on toolpath efficiency, machining time, and material removal helps refine their CAM and CNC programming skills.

Hydronic Heating Systems

The Hydronic Heating Systems Simulation trains students on hydronic heating systems, which use water to distribute heat throughout a building. Students can practice virtually installing and troubleshooting systems that include boilers, radiators, and piping systems. Interactive exercises focus on adjusting water flow rates, pressure settings, and temperature control for radiant heating. Real-time feedback is provided on system balance, heat distribution, and energy efficiency.

Control Systems and Automation

The Control Systems and Automation module provides students with a virtual environment to design, analyze, and simulate control systems. Through interactive exercises and simulations, students explore PID controllers, feedback loops, and control theory, gaining practical insights into optimizing system performance, ensuring stability, and mastering automation in industrial processes.

Thermodynamics and Heat Transfer in Aerospace Systems

Explore the principles of thermal management in aerospace systems, focusing on efficient heat dissipation and insulation techniques for engines, fuselages, and spacecraft thermal control systems. Through virtual simulations, students will study the heat transfer processes including conduction, convection, and radiation, and apply them to real-world aerospace environments. Engage in interactive lessons to optimize thermal performance and ensure energy efficiency while preventing component overheating.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top