imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the fundamental properties of machining materials such as steel, aluminum, brass, and plastics.
  • Learn how to select the appropriate cutting tools based on material characteristics like hardness and machinability.
  • Gain practical experience in adjusting machining parameters (speed, feed rate, depth of cut) for different materials to optimize tool life and efficiency.
  • Explore the impact of material properties on cutting tool performance and wear through XR-based simulations.
  • Develop skills in troubleshooting machining challenges such as tool wear and material deformation during the cutting process.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

CNC Programming and Machining

Explore CNC programming and machining with XR simulations, providing hands-on experience in automated production for various machining operations.

Robotics and Mechatronics Integration

Provide students with hands-on experience in designing, programming, and integrating robotic systems with mechanical components through immersive XR simulations. Students will work with virtual robotic arms and mechatronic systems, programming movements, adjusting sensors, and controlling actuators. The simulation includes interactive scenarios for integrating mechanical and electronic systems using sensors, motors, and control logic. Students will receive real-time feedback on robotic precision, response time, and the overall performance of the integrated systems.

Electrical Machines and Motor Control

The Electrical Machines and Motor Control module provides virtual environments where students can operate and analyze various motors and generators, including induction, synchronous, DC, and stepper types. Through interactive lessons and simulations, students explore motor control techniques and performance characteristics, gaining insights into efficiency, torque-speed relationships, and power factor correction.

Engine Performance Monitoring and Diagnostics

Enhance expertise in monitoring engine performance metrics and diagnosing operational inefficiencies in areas like power output, fuel economy, and emission control using XR-powered simulations.

Thermodynamics and Heat Transfer in Aerospace Systems

Explore the principles of thermal management in aerospace systems, focusing on efficient heat dissipation and insulation techniques for engines, fuselages, and spacecraft thermal control systems. Through virtual simulations, students will study the heat transfer processes including conduction, convection, and radiation, and apply them to real-world aerospace environments. Engage in interactive lessons to optimize thermal performance and ensure energy efficiency while preventing component overheating.

Avionics Systems Troubleshooting

Explore XR-based simulations for maintaining and repairing avionics systems, including communication, navigation, and monitoring equipment. Students will engage with components like radar systems, transponders, flight control systems, and GPS, troubleshooting electrical issues, calibrating instruments, and updating software. Real-time feedback ensures optimal diagnostic accuracy, fault identification, and avionics performance.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top