imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the fundamental properties of machining materials such as steel, aluminum, brass, and plastics.
  • Learn how to select the appropriate cutting tools based on material characteristics like hardness and machinability.
  • Gain practical experience in adjusting machining parameters (speed, feed rate, depth of cut) for different materials to optimize tool life and efficiency.
  • Explore the impact of material properties on cutting tool performance and wear through XR-based simulations.
  • Develop skills in troubleshooting machining challenges such as tool wear and material deformation during the cutting process.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Mechatronics and Robotics

Explore the integration of mechanical, electrical, and computer systems in the design and operation of mechatronics and robotics.

Gas Furnace Installation and Repair

The Gas Furnace Installation and Repair Simulation teaches students to install and repair gas furnaces, with a focus on proper venting and safety protocols for working with natural gas. Virtual scenarios guide students through connecting gas lines, ductwork, and venting systems for gas furnaces. Interactive exercises help students practice lighting pilot lights, adjusting gas valves, and monitoring flame sensors. The simulation provides feedback on safety practices, combustion efficiency, and troubleshooting issues like gas leaks, ignition failures, or cracked heat exchangers.

Refrigerant Handling and Charging Simulation

The Refrigerant Handling and Charging Simulation provides training on safely handling refrigerants, charging HVAC systems, and recovering refrigerants in compliance with EPA regulations. The simulation features virtual scenarios where students select the appropriate refrigerant types, connect service gauges, and monitor pressures during the charging process. Interactive exercises on refrigerant recovery allow students to practice safe recovery techniques before repairs or replacements. Real-time feedback is provided on refrigerant levels, system pressures, and adherence to EPA regulations for proper refrigerant handling.

Servo Motor and Stepper Motor Control

Explore the use and control of servo motors and stepper motors in precision control applications. Through virtual simulations, students can set up and fine-tune motor control circuits, adjusting parameters such as speed, torque, and position. Real-time feedback on control accuracy, performance optimization, and motor troubleshooting enhances understanding and hands-on learning.

Cardiovascular Devices and Hemodynamics Simulation

Train students in the design and analysis of cardiovascular devices with a focus on hemodynamics and fluid flow through immersive XR simulations. Students will simulate blood flow dynamics and design key devices like stents, heart valves, pacemakers, and vascular grafts, optimizing performance and minimizing complications.

Human Factors and Ergonomics in Aerospace Design

Explore human factors engineering in aerospace design with XR simulations, focusing on improving cockpit layouts, pilot comfort, and crew safety. Students can design ergonomic cockpits, control panels, and crew seating arrangements while addressing the challenges of pilot workload reduction and enhancing the user interface. Interactive lessons provide valuable insights into optimizing design for both efficiency and safety, especially during emergency procedures. Real-time feedback on ergonomic efficiency, human-machine interaction, and compliance with safety regulations ensures students can apply best practices in their designs.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top