imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the principles of prosthetic and orthotic device design and fitting.
  • Design customizable lower and upper limb prosthetics based on patient needs.
  • Learn to fit prosthetic devices to virtual patients, adjusting alignment for comfort and function.
  • Evaluate device ergonomics, mechanical strength, and patient mobility.
  • Receive real-time feedback on device performance to enhance understanding of prosthetics and orthotics.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Milling Machine Operations

Explore milling operations in XR, mastering face milling, side milling, slotting, and drilling with hands-on simulation.

Airflow and Duct Design Simulation

The Airflow and Duct Design Simulation trains students in calculating airflow requirements and designing ducts to ensure HVAC systems operate efficiently. The simulation features virtual tools for calculating airflow based on building dimensions and heating/cooling loads. Students engage in interactive duct design exercises, where they size ducts, select materials, and place vents for optimal airflow. Real-time feedback is provided on pressure loss, air distribution efficiency, and adherence to industry standards.

Staircase Building

The Staircase Building Simulation teaches students how to construct staircases, including stringers, risers, and treads, while ensuring code compliance and safety. Virtual scenarios guide students through laying out, cutting, and assembling staircase components. Interactive tutorials cover measuring rise and run, cutting stringers, and installing treads and risers. Real-time feedback is provided on staircase alignment, step dimensions, and adherence to safety and building codes.

Sustainability and Energy Efficiency in Mechatronics

Explore the principles of sustainable mechatronics design, with a focus on energy efficiency and resource management. Through virtual simulations, students will analyze the energy consumption of various mechatronic systems and processes, engage in interactive scenarios to optimize systems for energy efficiency, reduce waste, and improve sustainability. Real-time feedback on energy usage, cost savings, and environmental impact helps students refine their design choices for maximum sustainability.

Indoor Air Quality and Ventilation Systems

The Indoor Air Quality and Ventilation Systems Simulation teaches students how to design, install, and maintain systems that improve indoor air quality (IAQ) and ventilation. Virtual tools are provided for installing ventilation systems, such as air purifiers, dehumidifiers, and energy recovery ventilators (ERVs). Students engage in interactive exercises where they measure and control indoor humidity, carbon dioxide levels, and particulate matter. Real-time feedback is offered on ventilation efficiency, IAQ improvement, and system maintenance.

Energy Efficiency and Green HVAC Technologies

The Energy Efficiency and Green HVAC Technologies Simulation provides students with hands-on experience in installing and operating energy-efficient HVAC systems and integrating green technologies like geothermal heat pumps, solar-assisted systems, and energy recovery ventilators (ERVs). Students will virtually install and operate these systems while measuring energy consumption and system performance. Scenarios include integrating renewable energy sources like solar panels into HVAC systems. Real-time feedback will focus on energy savings, system performance, and environmental impact.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top