imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Gain knowledge of the core steps in the photolithography process, including mask alignment, light exposure, and resist development.
  • Use virtual labs to observe and analyze the purpose and impact of each photolithography step on semiconductor wafer processing.
  • Interact with virtual tools to operate photolithography machines, such as mask aligners and exposure units.
  • Practice adjusting alignment, exposure time, and focus settings to achieve optimal photoresist application and pattern transfer.
  • Receive real-time feedback on key metrics like mask alignment accuracy, resist coating uniformity, and exposure fidelity.
  • Analyze the effects of different exposure and alignment adjustments to ensure precise pattern transfer onto semiconductor wafers.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Human Factors and Ergonomics in Aerospace Design

Explore human factors engineering in aerospace design with XR simulations, focusing on improving cockpit layouts, pilot comfort, and crew safety. Students can design ergonomic cockpits, control panels, and crew seating arrangements while addressing the challenges of pilot workload reduction and enhancing the user interface. Interactive lessons provide valuable insights into optimizing design for both efficiency and safety, especially during emergency procedures. Real-time feedback on ergonomic efficiency, human-machine interaction, and compliance with safety regulations ensures students can apply best practices in their designs.

Energy Systems and Power Generation

This XR simulation teaches students the principles of energy conversion and power generation systems, including the use of renewable energy sources. Through virtual simulations, students can explore various power generation systems, such as steam turbines, internal combustion engines, wind turbines, and solar panels. Interactive scenarios guide students in analyzing energy efficiency, heat loss, and optimizing power output, with feedback on energy conversion rates, sustainability, and overall system performance.

Behavioral and Mental Health Crisis Intervention

Equip students with the skills to manage mental health crises and behavioral emergencies through immersive XR simulations. Students will explore scenarios involving conditions like anxiety, panic attacks, suicidal ideation, and psychotic episodes, while practicing de-escalation and therapeutic communication techniques.

Pipe Installation and Layout Simulation

Learn how to properly install and layout plumbing pipes for residential, commercial, and industrial applications. This simulation allows students to virtually select and install different types of pipes, such as PVC, copper, and PEX, in walls, floors, and underground settings. Students will practice measuring, cutting, and connecting pipes using various fittings and couplings. Real-time feedback will be provided on pipe alignment, water flow, and adherence to plumbing codes.

Mechanical System Design and Optimization

Enable students to design and optimize complex mechanical systems through XR simulations. The simulation offers virtual scenarios where students can create and refine mechanical systems like engines, HVAC systems, turbines, and gearboxes. They will use interactive tools to adjust system parameters, reduce weight, improve efficiency, and lower production costs. Real-time feedback will guide students on design constraints, feasibility, and cost-effectiveness, helping them develop the skills to optimize mechanical systems for peak performance.

Flooring Installation

The Flooring Installation Simulation teaches students how to install various types of flooring materials, including hardwood, laminate, tile, and carpeting. Virtual scenarios guide students through the process, from measuring and cutting materials to laying and securing floorboards or tiles. Tutorials cover preparing subfloors, aligning seams, and ensuring smooth, even surfaces for the final installation. Real-time feedback is provided on precision cutting, material placement, and proper finishing techniques to ensure a high-quality flooring installation.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top