imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the fundamental concepts of plasma generation, ion interactions, and surface modification in semiconductor fabrication.
  • Explore key plasma processes like reactive ion etching (RIE) and plasma-enhanced chemical vapor deposition (PECVD).
  • Use virtual tools to control plasma etching and deposition parameters, including gas flow rates, RF power, pressure, and temperature.
  • Adjust system parameters in real time and observe their effects on material surface interactions, etching precision, and deposition uniformity.
  • Engage in scenarios where students fine-tune plasma processing conditions to suit different materials, device geometries, and process requirements.
  • Analyze how variations in gas composition, RF energy, and pressure levels impact adhesion, uniformity, and feature resolution.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Transformer Installation and Testing

Gain hands-on experience in installing and testing electrical transformers for power distribution. In this simulation, students will virtually install step-up and step-down transformers in industrial and commercial settings. They will practice testing transformer windings, polarity, and voltage using virtual testing equipment. Real-time feedback will be provided on transformer selection, installation safety, and testing accuracy.

Smart Grid and Internet of Things (IoT) Integration

The Smart Grid and Internet of Things (IoT) Integration module trains students on integrating smart grid technology with IoT devices in electrical systems. Through interactive virtual simulations, students explore the design, communication, and management of smart grid components, focusing on scalability, security, and energy efficiency.

Human-Machine Interface (HMI) Design

Equip students with the skills to design and program Human-Machine Interface (HMI) systems for industrial automation. Through virtual simulations, students will create HMI dashboards to monitor and control machinery, systems, and processes. They will interact with various machine parameters, such as system start-up, shutdown, and emergency stop functions, while receiving feedback on user interface design, system responsiveness, and ease of use.

Specialty Surgery Simulation (e.g., Neurosurgery, Orthopedics)

Provide students with exposure to specialized types of surgery, such as neurosurgery, orthopedic surgery, or cardiovascular surgery, through immersive XR simulations. These virtual scenarios focus on the unique instruments, techniques, and procedures associated with each surgical specialty. Students practice assisting during complex surgeries, such as spine operations, joint replacements, or brain surgeries, receiving real-time guidance on instrument handling, positioning, and support for high-precision tasks.

Staircase Building

The Staircase Building Simulation teaches students how to construct staircases, including stringers, risers, and treads, while ensuring code compliance and safety. Virtual scenarios guide students through laying out, cutting, and assembling staircase components. Interactive tutorials cover measuring rise and run, cutting stringers, and installing treads and risers. Real-time feedback is provided on staircase alignment, step dimensions, and adherence to safety and building codes.

Framing and Structural Carpentry

The Framing and Structural Carpentry Simulation trains students in the framing techniques used for constructing walls, floors, roofs, and ceilings in residential and commercial buildings. Virtual scenarios guide students through the process of measuring, cutting, and assembling studs, joists, and rafters. Interactive tutorials cover the creation of window and door openings, the installation of headers, and ensuring structural stability. Students receive real-time feedback on measurement accuracy, alignment, and adherence to building codes.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top