imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Use chromatography techniques in simulations to purify proteins, learning the key factors that affect efficiency and yield.
  • Learn to interpret experimental data on protein structure, stability, and functional properties.
  • Use interactive lessons to explore enzyme kinetics, reaction rates, and substrate interactions in a dynamic XR environment.
  • Conduct virtual experiments to design proteins with specific characteristics, such as increased stability or altered activity.
  • Study protein folding mechanisms and understand the impact of misfolding on biochemical functions and stability.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Biomaterials and Tissue Engineering

Immerse students in the properties and applications of biomaterials used in implants, prosthetics, and tissue engineering through innovative virtual labs. Students will interact with biomaterials like polymers, ceramics, metals, and composites, and design tissue scaffolds for regenerative medicine, enhancing their understanding of material selection and biocompatibility.

Microcontroller and Embedded Systems Programming

The Microcontroller and Embedded Systems module provides virtual environments (e.g., Arduino, Raspberry Pi) where students can design, simulate, and test embedded systems. Through interactive exercises, students learn to interface sensors, actuators, and communication modules, while writing and debugging code to control devices effectively.

Rocket Propulsion and Launch Systems

Explore the principles of rocket propulsion and the dynamics of launch systems through XR-powered simulations. Students engage in virtual rocket labs where they design and analyze rocket engines, simulate propellant flow, and study thrust and trajectory. Interactive scenarios allow students to gain a deeper understanding of staging, ignition sequences, and flight stability during launch, with feedback provided on propulsion efficiency, fuel consumption, and optimization of launch trajectories.

Entering manholes/inlets

Enhance skills for safely entering manholes and inlets, with XR-based simulations to provide realistic training on handling confined spaces.

Renewable Energy Systems (Solar & Wind)

Learn how to install and maintain renewable energy systems, including solar photovoltaic (PV) systems and wind turbines. Through virtual simulations, students will install solar panels, inverters, and battery systems in both residential and commercial settings. They will also practice wiring wind turbines and integrating them with grid systems or off-grid installations. Real-time feedback will be provided on energy generation efficiency, grid tie-in, and troubleshooting renewable energy systems.

Vehicle Dynamics and Performance Analysis

Delve into the science of vehicle dynamics with this immersive XR simulation. Students can explore vehicle stability, handling, and ride comfort in various scenarios, analyzing how factors like acceleration, braking, and cornering affect overall vehicle performance. Using virtual simulations, students can test different vehicle configurations, suspension systems, tire mechanics, and aerodynamics to optimize design for real-world conditions.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top