imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Demonstrate appropriate actions in scenarios such as cardiac arrest, anaphylactic shock, trauma, and respiratory distress.
  • Apply CPR techniques, use defibrillators, administer emergency medications, and manage airways effectively.
  • Develop critical thinking and decision-making skills under time-sensitive and high-pressure situations.
  • Follow established guidelines and protocols to ensure compliance with clinical and safety standards during emergencies.
  • Work collaboratively in simulated team-based scenarios to ensure effective communication and coordination among healthcare professionals.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Wind and Solar Energy Systems Simulation

This XR simulation provides training on designing and analyzing renewable energy systems, focusing on wind turbines and solar panels. Virtual simulations allow students to explore the dynamics of wind turbines, including blade aerodynamics and energy conversion efficiency. Students can design solar panel arrays, optimize their angle for maximum energy generation, and evaluate their performance. The simulation offers real-time feedback on renewable energy efficiency, cost savings, and environmental impact, enabling students to make informed decisions about optimizing renewable energy systems.

Failure Mode and Effects Analysis (FMEA) Simulation

Gain expertise in Failure Mode and Effects Analysis (FMEA) through immersive XR simulations. Learn to systematically identify, assess, and mitigate potential failure points in semiconductor manufacturing processes to enhance reliability and quality.

Control System Design and Tuning

Explore the design, simulation, and tuning of control systems for mechanical and electrical applications. Through interactive simulations, students will design feedback control systems using PID (Proportional-Integral-Derivative) controllers to regulate variables such as speed, temperature, or position. Real-time feedback will help students evaluate control system stability, response times, and error minimization for optimal system performance.

Aseptic Technique Simulation

Reinforce the importance of aseptic techniques during surgery with XR-enabled scenarios that immerse students in maintaining a sterile environment. Students will practice critical procedures such as hand scrubbing, gowning, gloving, and managing the sterile field, with virtual consequences for breaches in sterility, such as simulated infections or procedural delays.

Underwater Welding Basics Simulation

The Underwater Welding Basics Simulation introduces students to the unique challenges faced by underwater welders in industries like marine, oil, and gas. This simulation allows students to virtually practice underwater welding, including the use of specialized equipment and managing visibility and pressure conditions. It also covers safety protocols, dive techniques, and the key differences between wet and dry welding. Students receive real-time feedback on managing electrical current, welding speed, and ensuring the quality of welds in an underwater environment.

Material Science and Mechanical Properties Analysis

Introduce students to material properties, testing methods, and their applications in mechanical engineering through XR simulations. Students will engage in virtual material testing labs where they perform various tests such as tensile tests, hardness tests, impact tests, and fatigue analysis. The simulation includes interactive lessons on material properties like strength, ductility, toughness, and elasticity. Real-time feedback will help students understand material selection, suitability for specific applications, and how to optimize design for enhanced performance.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top