imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn how to select the appropriate tools and machines for cutting internal and external threads.
  • Gain proficiency in setting thread pitches, adjusting machine speeds, and ensuring correct tool alignment for consistent thread cutting.
  • Understand the principles of thread geometry and how to control thread depth and uniformity during operation.
  • Develop the ability to troubleshoot common threading issues, such as incorrect pitch, misalignment, or thread damage.
  • Achieve an understanding of the relationship between thread fit, material properties, and application-specific requirements for effective threading.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Surface Grinding and Finishing

Explore XR-based simulations for surface grinding and finishing operations. Students will interact with virtual surface grinders, simulating grinding processes on different materials to achieve precise flatness and superior surface finishes. Through scenarios involving the selection of grinding wheels, feed adjustments, and optimal workpiece setups, users can refine their skills in precision grinding. Feedback is provided on surface finish quality, material removal rates, and grinding accuracy, allowing users to enhance their machining abilities.

Doping Process Simulation

Experience the doping process in semiconductor fabrication through immersive XR simulations. Learn how impurities alter electrical properties by working with virtual tools to control ion implantation, diffusion, and annealing, ensuring precise adjustments to material characteristics.

Framing and Structural Carpentry

The Framing and Structural Carpentry Simulation trains students in the framing techniques used for constructing walls, floors, roofs, and ceilings in residential and commercial buildings. Virtual scenarios guide students through the process of measuring, cutting, and assembling studs, joists, and rafters. Interactive tutorials cover the creation of window and door openings, the installation of headers, and ensuring structural stability. Students receive real-time feedback on measurement accuracy, alignment, and adherence to building codes.

Biomaterials and Tissue Engineering

Immerse students in the properties and applications of biomaterials used in implants, prosthetics, and tissue engineering through innovative virtual labs. Students will interact with biomaterials like polymers, ceramics, metals, and composites, and design tissue scaffolds for regenerative medicine, enhancing their understanding of material selection and biocompatibility.

Plant Biotechnology and Genetic Modification

Discover plant biotechnology and genetic modification through immersive XR simulations, focusing on breeding, genetic engineering, and crop improvement. Apply virtual labs to create genetically modified plants with enhanced traits, explore transformation techniques, and address ethical considerations in GMO development.

Fixture Design and Workholding Techniques

Explore XR-based simulations for designing and using fixtures, jigs, and workholding devices for machining complex parts. Students will engage in virtual fixture design, learning to create custom fixtures to hold irregularly shaped workpieces securely. The interactive lessons cover clamping techniques, workpiece alignment, and ensuring rigidity during cutting operations. Real-time feedback helps students assess the effectiveness of their fixture designs, machining stability, and part accuracy, all while improving their ability to handle complex machining tasks.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top