imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn key strategies to analyze yield data, identify process inefficiencies, and maximize production output.
  • Explore concepts of process stability, defect detection, and root cause analysis to improve manufacturing yield.
  • Engage in virtual simulations of defects such as contamination, etching errors, misalignment, and surface defects.
  • Apply troubleshooting techniques to diagnose root causes and implement corrective actions in manufacturing scenarios.
  • Use interactive tools to modify parameters like temperature, pressure, etching time, and material handling, observing the impact on yield.
  • Evaluate how adjustments affect process efficiency, defect rates, and final product quality.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Failure Mode and Effects Analysis (FMEA) Simulation

Gain expertise in Failure Mode and Effects Analysis (FMEA) through immersive XR simulations. Learn to systematically identify, assess, and mitigate potential failure points in semiconductor manufacturing processes to enhance reliability and quality.

Electrical Panel and Breaker Installation

Learn the process of installing electrical panels and breakers in residential, commercial, and industrial systems. Through virtual simulations, students will design and install electrical panels, wire breakers, and ensure the correct distribution of electrical loads. They will practice the proper techniques for panel installation, breaker selection, and safety measures while receiving feedback on system functionality and code compliance.

Bioprocess Engineering and Scale-Up

Explore the principles of scaling up bioprocesses from lab-scale experiments to industrial production with immersive XR simulations. Enhance your understanding of bioreactor control, optimize large-scale production conditions for biologics, vaccines, and therapeutic compounds, and maintain product quality across different production scales.

Process Control and Automation Simulation

Immerse in process control and automation through interactive XR simulations. Work with virtual control panels, automated equipment, and robotic systems to monitor, adjust, and optimize semiconductor fabrication processes, while troubleshooting control issues with precision and efficiency.

Fluid Mechanics and Computational Fluid Dynamics (CFD)

Teach students the principles of fluid dynamics through immersive XR simulations and hands-on practice with Computational Fluid Dynamics (CFD). Virtual scenarios allow students to simulate fluid flow in pipes, pumps, valves, and aerodynamic surfaces, offering a deep dive into the behavior of fluids in different environments. Students will use interactive tools to set up boundary conditions, generate meshes, and analyze flow patterns using CFD software. Real-time feedback focuses on improving flow efficiency, managing pressure drop, understanding turbulence, and optimizing design solutions.

Wind Tunnel Testing and Aerodynamic Optimization

Gain hands-on experience in wind tunnel testing to study the aerodynamic behavior of aircraft models and optimize designs for improved flight performance. Using virtual wind tunnel environments, students will explore how lift, drag, and flow separation are affected by various aerodynamic factors. With interactive tools, they can adjust test conditions like wind speed, angle of attack, and turbulence levels, while receiving feedback on optimizing wing and fuselage shapes for maximum efficiency.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top