imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn key strategies to analyze yield data, identify process inefficiencies, and maximize production output.
  • Explore concepts of process stability, defect detection, and root cause analysis to improve manufacturing yield.
  • Engage in virtual simulations of defects such as contamination, etching errors, misalignment, and surface defects.
  • Apply troubleshooting techniques to diagnose root causes and implement corrective actions in manufacturing scenarios.
  • Use interactive tools to modify parameters like temperature, pressure, etching time, and material handling, observing the impact on yield.
  • Evaluate how adjustments affect process efficiency, defect rates, and final product quality.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Surgical Instrument Identification and Handling

An immersive XR simulation designed to familiarize students with identifying, handling, and passing surgical instruments during procedures. The program emphasizes precision, timing, and adherence to sterile techniques in a virtual operating room.

Airflow and Duct Design Simulation

The Airflow and Duct Design Simulation trains students in calculating airflow requirements and designing ducts to ensure HVAC systems operate efficiently. The simulation features virtual tools for calculating airflow based on building dimensions and heating/cooling loads. Students engage in interactive duct design exercises, where they size ducts, select materials, and place vents for optimal airflow. Real-time feedback is provided on pressure loss, air distribution efficiency, and adherence to industry standards.

Electromagnetics and Wave Propagation

The Electromagnetics and Wave Propagation module allows students to explore the principles of electromagnetic fields and wave propagation through virtual labs and interactive scenarios. By simulating key concepts, students gain insights into the behavior of electromagnetic waves, field interactions, and signal transmission across various media and systems.

Risk Assessment and Disaster Management

Train students in assessing risks and developing disaster management strategies for civil engineering projects. Engage with virtual scenarios simulating the impact of natural disasters like floods, landslides, and earthquakes on infrastructure. Learn how to create emergency response plans, implement risk mitigation measures, and develop post-disaster recovery strategies. Receive feedback on disaster preparedness, risk management techniques, and building resilience in infrastructure.

Residential Electrical Systems Simulation

Familiarize students with the design, installation, and maintenance of residential electrical systems. Through virtual simulations, students will install wiring for outlets, lighting, and breakers in a virtual house, practicing the principles and safety protocols involved in residential electrical systems. Scenarios will cover National Electrical Code (NEC) requirements, with real-time feedback on adherence to safety standards and proper installation techniques.

Robotics and Mechatronics Integration

Provide students with hands-on experience in designing, programming, and integrating robotic systems with mechanical components through immersive XR simulations. Students will work with virtual robotic arms and mechatronic systems, programming movements, adjusting sensors, and controlling actuators. The simulation includes interactive scenarios for integrating mechanical and electronic systems using sensors, motors, and control logic. Students will receive real-time feedback on robotic precision, response time, and the overall performance of the integrated systems.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top