imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the purpose and significance of measurement and inspection in semiconductor fabrication, focusing on material and device analysis.
  • Explore key metrology concepts like critical dimensions, surface roughness, and film thickness.
  • Use interactive virtual tools to simulate the operation of Scanning Electron Microscopes (SEM), Atomic Force Microscopes (AFM), and profilometers.
  • Practice adjusting instrument parameters and settings to achieve accurate and reliable measurements.
  • Conduct virtual measurements to determine film thickness, surface roughness, and critical dimensions of semiconductor devices.
  • Interpret data to assess material characteristics, performance, and compliance with manufacturing specifications.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Geotechnical Engineering and Soil Mechanics

This XR simulation provides students with hands-on training in soil analysis, foundation design, and geotechnical investigation techniques. Virtual soil testing labs allow students to perform essential tests such as the Standard Penetration Test (SPT), Cone Penetration Test (CPT), and triaxial shear tests. The simulation includes interactive scenarios for designing shallow and deep foundations, retaining walls, and methods for slope stabilization. Students receive feedback on soil classification, bearing capacity, settlement predictions, and foundation stability to ensure they understand the fundamental principles of geotechnical engineering.

Surveying and Geographic Information Systems (GIS)

Gain practical insights into land surveying and the application of GIS technology in civil engineering projects. Virtual scenarios let students operate surveying instruments like total stations, theodolites, and GPS receivers to collect precise data. Interactive tools allow for the creation of topographic maps, contour lines, and spatial data analysis using GIS software. Feedback focuses on improving surveying precision, interpreting data accurately, and mastering mapping techniques.

Electric Vehicle (EV) Technology and Battery Management

Dive into the world of electric vehicle (EV) systems and gain practical expertise in designing and managing critical components, including batteries, motors, and charging systems.

Machine Maintenance and Troubleshooting

Engage in XR-driven simulations for machine maintenance, lubrication, and troubleshooting. Students will virtually perform preventive maintenance tasks such as oiling, cleaning, and inspecting machines for wear. Interactive scenarios will guide them through diagnosing and resolving common machining issues like chatter, tool breakage, misalignment, and poor surface finish. Real-time feedback on maintenance quality, machine performance, and troubleshooting accuracy helps refine their skills in maintaining and optimizing machine functionality.

Aircraft Structural Repair and Sheet Metal Work

Engage with XR-based simulations for repairing aircraft structures, focusing on sheet metal work, composites, and ensuring structural integrity. Students will work on repairing fuselage sections, wings, and other components using riveting, welding, and composite techniques. Real-time feedback ensures adherence to engineering standards and maintains the aircraft's aerodynamic properties.

Avionics and Control Systems

Explore the design and implementation of avionics systems used in modern aircraft, focusing on navigation, communication, and flight control. Engage in virtual scenarios to configure complex avionics systems such as autopilot, inertial navigation systems (INS), and radar. Through interactive lessons, integrate sensors, gyroscopes, accelerometers, and other electronic components for precise control. Receive feedback on avionics system accuracy, reliability, and the analysis of flight data in real-time.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top