imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the purpose and significance of measurement and inspection in semiconductor fabrication, focusing on material and device analysis.
  • Explore key metrology concepts like critical dimensions, surface roughness, and film thickness.
  • Use interactive virtual tools to simulate the operation of Scanning Electron Microscopes (SEM), Atomic Force Microscopes (AFM), and profilometers.
  • Practice adjusting instrument parameters and settings to achieve accurate and reliable measurements.
  • Conduct virtual measurements to determine film thickness, surface roughness, and critical dimensions of semiconductor devices.
  • Interpret data to assess material characteristics, performance, and compliance with manufacturing specifications.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Material Science for Aerospace Applications

Explore the properties and applications of materials used in aerospace structures, focusing on composites, alloys, and advanced polymers. Engage in virtual labs to test materials for key properties like tensile strength, fatigue resistance, corrosion resistance, and thermal performance. Simulate material selection for aerospace components based on weight, durability, and cost considerations, and receive feedback on material performance, safety factors, and compliance with aerospace standards.

Chiller System Installation and Maintenance

The Chiller System Installation and Maintenance Simulation trains students on the installation, maintenance, and troubleshooting of chiller systems used in commercial buildings for large-scale cooling applications. Students will practice virtually installing air-cooled and water-cooled chiller systems, connecting them to cooling towers and air handlers. Maintenance tasks include cleaning chiller tubes, monitoring refrigerant levels, and inspecting compressors. Troubleshooting scenarios will focus on issues like reduced cooling capacity, refrigerant leaks, and mechanical failures. Real-time feedback will be provided on system performance, energy consumption, and efficiency optimization.

Sustainability and Energy Efficiency in Mechatronics

Explore the principles of sustainable mechatronics design, with a focus on energy efficiency and resource management. Through virtual simulations, students will analyze the energy consumption of various mechatronic systems and processes, engage in interactive scenarios to optimize systems for energy efficiency, reduce waste, and improve sustainability. Real-time feedback on energy usage, cost savings, and environmental impact helps students refine their design choices for maximum sustainability.

Staircase Building

The Staircase Building Simulation teaches students how to construct staircases, including stringers, risers, and treads, while ensuring code compliance and safety. Virtual scenarios guide students through laying out, cutting, and assembling staircase components. Interactive tutorials cover measuring rise and run, cutting stringers, and installing treads and risers. Real-time feedback is provided on staircase alignment, step dimensions, and adherence to safety and building codes.

Mechatronic Systems Troubleshooting Simulation

Provide students with XR-based scenarios to diagnose and troubleshoot common issues in mechatronic systems, including electrical, mechanical, and software faults. Using virtual diagnostic tools like multimeters, oscilloscopes, and logic analyzers, students will identify and resolve system faults such as sensor failures, PLC logic errors, and mechanical misalignments. Real-time feedback will help refine troubleshooting approaches and improve problem-solving efficiency in an immersive XR environment.

Power Electronics and Converters

The Power Electronics and Converters module provides virtual environments where students learn the fundamentals of power electronics, including AC-DC, DC-DC, and DC-AC converters. Through interactive simulations, students design, test, and analyze key power conversion circuits while focusing on efficiency, performance, and system optimization.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top