imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the purpose and significance of measurement and inspection in semiconductor fabrication, focusing on material and device analysis.
  • Explore key metrology concepts like critical dimensions, surface roughness, and film thickness.
  • Use interactive virtual tools to simulate the operation of Scanning Electron Microscopes (SEM), Atomic Force Microscopes (AFM), and profilometers.
  • Practice adjusting instrument parameters and settings to achieve accurate and reliable measurements.
  • Conduct virtual measurements to determine film thickness, surface roughness, and critical dimensions of semiconductor devices.
  • Interpret data to assess material characteristics, performance, and compliance with manufacturing specifications.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Robotics and Unmanned Aerial Vehicles (UAVs)

Explore the world of designing, building, and controlling Unmanned Aerial Vehicles (UAVs) and aerospace robotics for autonomous flight. In this simulation, students will gain hands-on experience by programming UAVs for specific missions, including navigation, obstacle avoidance, and data collection. Using XR-enabled environments, students will interact with drone dynamics, sensor integration, and flight path optimization techniques, while receiving valuable feedback on UAV stability, control responses, and overall mission performance.

Cardiovascular Devices and Hemodynamics Simulation

Train students in the design and analysis of cardiovascular devices with a focus on hemodynamics and fluid flow through immersive XR simulations. Students will simulate blood flow dynamics and design key devices like stents, heart valves, pacemakers, and vascular grafts, optimizing performance and minimizing complications.

Transmission Systems and Gearbox Design

This module focuses on automotive transmission systems, including manual, automatic, and CVTs. It provides students with a hands-on approach to understanding the design and functionality of various transmission components such as gears, clutches, and differentials. Through virtual simulations, students will learn about gear ratio calculations, shifting mechanisms, and the optimization of power transmission in vehicles.

Residential Electrical Systems Simulation

Familiarize students with the design, installation, and maintenance of residential electrical systems. Through virtual simulations, students will install wiring for outlets, lighting, and breakers in a virtual house, practicing the principles and safety protocols involved in residential electrical systems. Scenarios will cover National Electrical Code (NEC) requirements, with real-time feedback on adherence to safety standards and proper installation techniques.

Welding Automation and Robotic Welding Simulation

The Welding Automation and Robotic Welding Simulation leverages XR to immerse users in operating and programming automated welding systems. Participants configure robotic arms for tasks like repetitive joints or intricate components, fine-tune welding parameters, and monitor processes for optimal performance. Feedback ensures proper setup, weld precision, and efficiency in industrial scenarios.

Disaster Preparedness and Mass Casualty Incident (MCI) Management

Immerse students in disaster preparedness and mass casualty incident (MCI) management through XR simulations. Students will explore virtual disaster scenarios, including natural disasters, chemical spills, and terrorist attacks, while practicing triage, resource allocation, and coordination with emergency services.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top