imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the unique properties and challenges of exotic metals and alloys.
  • Learn specialized welding techniques for high-performance materials like titanium and Inconel.
  • Practice adjusting welding settings, gas flow, and filler materials for optimal results with exotic materials.
  • Develop skills in controlling oxidation and heat sensitivity during the welding process.
  • Assess weld quality and material integrity when working with advanced metals and alloys.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Precision Measurement and Inspection

Explore the art of precision measurement and inspection using advanced tools such as micrometers, calipers, dial indicators, and gauges. This simulation allows users to virtually measure machined parts, ensuring that they meet strict dimensional tolerances. Learn how to read measurement instruments accurately, interpret technical drawings, and identify any deviations that could affect the quality of the part. With real-time feedback on measurement precision and inspection accuracy, users will gain the skills needed for quality control in manufacturing and machining processes.

Hybrid and Alternative Fuel Technologies

Hybrid and Alternative Fuel Technologies provides an in-depth exploration of hybrid vehicle systems and alternative fuel technologies, including hydrogen, compressed natural gas (CNG), and biofuels. Through XR-based simulations, students will study the operation and integration of hybrid powertrains, energy storage systems, and alternative fuel tanks. The course emphasizes designing fuel-efficient vehicles using alternative energy sources to reduce carbon emissions.

Rocket Propulsion and Launch Systems

Explore the principles of rocket propulsion and the dynamics of launch systems through XR-powered simulations. Students engage in virtual rocket labs where they design and analyze rocket engines, simulate propellant flow, and study thrust and trajectory. Interactive scenarios allow students to gain a deeper understanding of staging, ignition sequences, and flight stability during launch, with feedback provided on propulsion efficiency, fuel consumption, and optimization of launch trajectories.

Trauma Management and Injury Stabilization

Equip students with the skills needed to manage trauma patients through immersive XR simulations. Students will practice controlling bleeding, stabilizing fractures, and preventing shock in a variety of trauma scenarios, such as car accidents, falls, and gunshot wounds.

Prosthetics and Orthotic Device Simulation

Empower with the skills to design, test, and fit prosthetic limbs and orthotic devices through immersive XR simulations. Users will engage in virtual scenarios to design customized prosthetics, adjust alignment, and optimize comfort and functionality for virtual patients.

Spacecraft Design and Orbital Mechanics

Dive into the design and analysis of spacecraft for space missions, focusing on key components like propulsion, thermal control, and communication systems. Use virtual tools to create satellites, space probes, and crewed spacecraft while mastering the principles of orbital mechanics. Learn to calculate orbital trajectories, understand gravitational effects, and simulate spacecraft maneuvering in space. Receive feedback on mission planning, fuel efficiency, and spacecraft stability in various orbits to optimize space exploration projects.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top