imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Explore the basic functions of machining tools such as lathes, mills, grinders, and drill presses, with virtual simulations for setting speeds, feeds, and cutting depths.
  • Enhance machine operation skills through interactive XR scenarios while following safety protocols, including PPE usage, machine guards, and lockout/tagout procedures.
  • Learn safe tool handling and positioning techniques to ensure accurate and effective machine use.
  • Receive real-time feedback on adherence to safety standards and operational best practices.
  • Practice identifying and correcting potential hazards in a simulated environment for real-world machine safety application.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

HVAC Load Calculation and System Sizing

The HVAC Load Calculation and System Sizing Simulation teaches students how to calculate heating and cooling loads and properly size HVAC systems for different buildings. Virtual tools are provided for load calculation, factoring in building insulation, square footage, number of occupants, and climate conditions. Students then engage in interactive scenarios to select the appropriate HVAC equipment based on the calculated loads. Real-time feedback is provided on the accuracy of system sizing, energy efficiency, and overall occupant comfort.

Refrigerant Handling and Charging Simulation

The Refrigerant Handling and Charging Simulation provides training on safely handling refrigerants, charging HVAC systems, and recovering refrigerants in compliance with EPA regulations. The simulation features virtual scenarios where students select the appropriate refrigerant types, connect service gauges, and monitor pressures during the charging process. Interactive exercises on refrigerant recovery allow students to practice safe recovery techniques before repairs or replacements. Real-time feedback is provided on refrigerant levels, system pressures, and adherence to EPA regulations for proper refrigerant handling.

Fluid Dynamics and Computational Fluid Dynamics (CFD)

Enhance your understanding of fluid dynamics principles and their application in engineering systems through XR-powered simulations.

Mechanics of Solids (Stress and Strain Analysis)

This XR simulation trains students to analyze stress and strain in solid objects subjected to various loading conditions. Virtual scenarios allow students to test mechanical components under tensile, compressive, shear, and torsional loads. Interactive lessons focus on calculating stress concentration factors, deflections, and material deformation, providing essential insights into the behavior of materials under stress. Students receive feedback on structural integrity, safety factors, and failure analysis to ensure optimal design and material selection.

Surveying and Geographic Information Systems (GIS)

Gain practical insights into land surveying and the application of GIS technology in civil engineering projects. Virtual scenarios let students operate surveying instruments like total stations, theodolites, and GPS receivers to collect precise data. Interactive tools allow for the creation of topographic maps, contour lines, and spatial data analysis using GIS software. Feedback focuses on improving surveying precision, interpreting data accurately, and mastering mapping techniques.

Aircraft Design and Structural Analysis

Teach students the principles of aircraft design, focusing on aerodynamics, weight distribution, and structural integrity. Explore virtual environments where students can design and analyze key aircraft components such as wings, fuselage, tail, and landing gear. Use interactive tools to perform stress and strain analysis, helping students understand load distribution, material strength, and potential failure points. Receive feedback on design optimization, weight reduction, and ensuring structural stability under various flight conditions.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top