imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Explore the basic functions of machining tools such as lathes, mills, grinders, and drill presses, with virtual simulations for setting speeds, feeds, and cutting depths.
  • Enhance machine operation skills through interactive XR scenarios while following safety protocols, including PPE usage, machine guards, and lockout/tagout procedures.
  • Learn safe tool handling and positioning techniques to ensure accurate and effective machine use.
  • Receive real-time feedback on adherence to safety standards and operational best practices.
  • Practice identifying and correcting potential hazards in a simulated environment for real-world machine safety application.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Advanced Welding Techniques (Exotic Metals and Alloys)

The Advanced Welding Techniques (Exotic Metals and Alloys) Simulation provides experience in welding high-performance materials like titanium, Inconel, and other exotic alloys. It offers virtual practice in welding materials that require specialized techniques due to their heat sensitivity, oxidation tendencies, and high strength. Students adjust welding settings, gas flow, and filler materials to meet the unique needs of these advanced metals. Feedback is provided on weld quality, material integrity, and the specific welding methods required for working with these materials.

Robotics and Unmanned Aerial Vehicles (UAVs)

Explore the world of designing, building, and controlling Unmanned Aerial Vehicles (UAVs) and aerospace robotics for autonomous flight. In this simulation, students will gain hands-on experience by programming UAVs for specific missions, including navigation, obstacle avoidance, and data collection. Using XR-enabled environments, students will interact with drone dynamics, sensor integration, and flight path optimization techniques, while receiving valuable feedback on UAV stability, control responses, and overall mission performance.

Biochemical Pathways and Metabolic Engineering

Explore metabolic pathways and their engineering through immersive XR simulations, focusing on optimizing microbial processes to produce valuable biochemicals. Utilize virtual tools to study pathways, identify bottlenecks, and implement strategies for efficient metabolite production.

Bioprocess Engineering and Scale-Up

Explore the principles of scaling up bioprocesses from lab-scale experiments to industrial production with immersive XR simulations. Enhance your understanding of bioreactor control, optimize large-scale production conditions for biologics, vaccines, and therapeutic compounds, and maintain product quality across different production scales.

Immunology and Vaccine Development

Explore the principles of immunology and the development of vaccines and therapeutic antibodies through immersive XR experiences. Enhance understanding of immune responses, antigen-antibody interactions, and the design of immunotherapies with virtual labs and interactive tutorials.

Product Lifecycle Management (PLM)

This XR simulation teaches students about the comprehensive processes involved in managing a product's lifecycle, from initial conception through design, development, production, and eventual retirement. Virtual tools allow students to coordinate product design, development, production, and sustainability, integrating CAD, CAM, and data management into the development cycle. Students will interact with real-world scenarios to optimize project timelines, resource allocation, and overall product lifecycle efficiency. Feedback is provided on their decisions related to production costs, environmental impact, and product sustainability.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top