imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn essential bioinformatics methods for analyzing biological data, such as DNA sequence alignment, gene prediction, and protein structure analysis.
  • Use virtual lab tools to simulate real-world scenarios in genome analysis and pathway mapping.
  • Explore interactive tutorials on popular bioinformatics software like BLAST, protein databases, and molecular docking simulations.
  • Model complex biological pathways in virtual environments to understand cellular interactions and metabolic networks.
  • Analyze experimental data to determine relationships between genes, proteins, and biological functions.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Human-Machine Interface (HMI) Design

Equip students with the skills to design and program Human-Machine Interface (HMI) systems for industrial automation. Through virtual simulations, students will create HMI dashboards to monitor and control machinery, systems, and processes. They will interact with various machine parameters, such as system start-up, shutdown, and emergency stop functions, while receiving feedback on user interface design, system responsiveness, and ease of use.

Avionics and Control Systems

Explore the design and implementation of avionics systems used in modern aircraft, focusing on navigation, communication, and flight control. Engage in virtual scenarios to configure complex avionics systems such as autopilot, inertial navigation systems (INS), and radar. Through interactive lessons, integrate sensors, gyroscopes, accelerometers, and other electronic components for precise control. Receive feedback on avionics system accuracy, reliability, and the analysis of flight data in real-time.

Indoor Air Quality and Ventilation Systems

The Indoor Air Quality and Ventilation Systems Simulation teaches students how to design, install, and maintain systems that improve indoor air quality (IAQ) and ventilation. Virtual tools are provided for installing ventilation systems, such as air purifiers, dehumidifiers, and energy recovery ventilators (ERVs). Students engage in interactive exercises where they measure and control indoor humidity, carbon dioxide levels, and particulate matter. Real-time feedback is offered on ventilation efficiency, IAQ improvement, and system maintenance.

Airway Clearance Techniques

Explore airway clearance techniques for managing mucus and secretions in patients with respiratory compromise through immersive simulations.

Airflow and Duct Design Simulation

The Airflow and Duct Design Simulation trains students in calculating airflow requirements and designing ducts to ensure HVAC systems operate efficiently. The simulation features virtual tools for calculating airflow based on building dimensions and heating/cooling loads. Students engage in interactive duct design exercises, where they size ducts, select materials, and place vents for optimal airflow. Real-time feedback is provided on pressure loss, air distribution efficiency, and adherence to industry standards.

Chronic Disease Management and Patient Education

The Chronic Disease Management and Patient Education module equips nursing students with the skills to support patients in managing chronic conditions. Through virtual interactions and interactive lessons, students practice guiding patients on lifestyle adjustments, medication adherence, and monitoring techniques, while focusing on education strategies that promote self-care, symptom control, and early complication recognition.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top