imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • React effectively to emergency surgical situations like cardiac arrest and hemorrhage in XR simulations.
  • Assist the surgical team with critical tasks such as instrument handoff, blood transfusion preparation, and equipment adjustments.
  • Improve decision-making skills and response times during simulated emergencies.
  • Apply real-time feedback to optimize emergency response strategies.
  • Develop a strong understanding of emergency protocols and teamwork in XR-based crisis scenarios.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Wind and Solar Energy Systems Simulation

This XR simulation provides training on designing and analyzing renewable energy systems, focusing on wind turbines and solar panels. Virtual simulations allow students to explore the dynamics of wind turbines, including blade aerodynamics and energy conversion efficiency. Students can design solar panel arrays, optimize their angle for maximum energy generation, and evaluate their performance. The simulation offers real-time feedback on renewable energy efficiency, cost savings, and environmental impact, enabling students to make informed decisions about optimizing renewable energy systems.

Plant Biotechnology and Genetic Modification

Discover plant biotechnology and genetic modification through immersive XR simulations, focusing on breeding, genetic engineering, and crop improvement. Apply virtual labs to create genetically modified plants with enhanced traits, explore transformation techniques, and address ethical considerations in GMO development.

Vibration Analysis and Mechanical Resonance

This XR simulation enables students to analyze vibration patterns and mechanical resonance in rotating and reciprocating systems. They will interact with virtual scenarios where they can examine vibration frequencies, amplitudes, and damping within mechanical structures. The simulation guides students through detecting resonance, identifying sources of vibration, and implementing solutions to reduce noise and wear. Real-time feedback will focus on vibration analysis, system stability, and reliability, providing students with the skills to ensure the durability and optimal performance of mechanical systems.

Airway Management and Ventilation

Equip students with the skills needed for effective airway management and ventilatory support in critical patients through XR-powered simulations. Students will practice intubation, using bag-valve masks (BVM), inserting airway adjuncts, and managing oxygen levels in emergency respiratory situations.

Sterilization and Disinfection Procedures

Immerse students in an XR-powered simulation to learn the critical processes of sterilization and disinfection. This training emphasizes the proper handling of surgical instruments, infection control, and the prevention of complications through adherence to sterilization protocols.

Building Automation Systems (BAS) and Smart HVAC

The Building Automation Systems (BAS) and Smart HVAC Simulation equips students with skills in installing and programming BAS to control HVAC systems, lighting, and other building systems in large commercial buildings. Students will engage in virtual scenarios to set up and program BAS systems, optimize energy use, and monitor the indoor climate. Interactive exercises will involve configuring smart thermostats, sensors, and networked devices for automated temperature and airflow control. Real-time feedback will focus on system efficiency, energy consumption, and troubleshooting networked components.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top