imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn how to apply loads, constraints, and boundary conditions to mechanical components in FEA simulations.
  • Develop skills in analyzing stress distribution, thermal effects, and vibration analysis within mechanical designs.
  • Understand material failure points and how to optimize designs for structural integrity and safety.
  • Gain experience in using FEA tools to assess and improve the performance of mechanical components.
  • Explore real-time feedback on design optimizations and material behavior under various conditions, enhancing problem-solving skills in engineering design.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Bridge Design and Analysis

Explore the principles of designing and analyzing a variety of bridges, such as suspension, truss, arch, and beam structures, through immersive XR simulations. Students can enhance their skills by creating virtual models, analyzing forces, and assessing structural behavior under dynamic loads. Engage in interactive scenarios to test bridge designs against real-world challenges, including wind, earthquakes, and traffic. Receive detailed feedback on load distribution, material optimization, and stability improvements to refine designs effectively.

Aircraft Electrical Systems Maintenance

Explore XR-based training for aircraft electrical systems maintenance, focusing on wiring, circuits, batteries, generators, and power distribution. Students will interact with virtual electrical components, reading wiring diagrams, measuring electrical loads, and diagnosing faults such as short circuits and open circuits. Real-time feedback enhances diagnostic accuracy and reinforces electrical safety practices.

Jackhammer Use and Concrete Work

Explore the techniques and safety practices required for effectively using a jackhammer in concrete demolition and surface preparation, enhancing skills through XR simulations for hands-on experience in various concrete tasks.

Metrology and Measurement Techniques Simulation

Gain hands-on experience in metrology and measurement through interactive XR simulations. Explore virtual labs to use tools like SEM, AFM, and profilometers, while learning techniques to measure film thickness, surface roughness, and critical dimensions with precision and accuracy.

Human-Machine Interface (HMI) Design

Equip students with the skills to design and program Human-Machine Interface (HMI) systems for industrial automation. Through virtual simulations, students will create HMI dashboards to monitor and control machinery, systems, and processes. They will interact with various machine parameters, such as system start-up, shutdown, and emergency stop functions, while receiving feedback on user interface design, system responsiveness, and ease of use.

Human Factors and Ergonomics in Aerospace Design

Explore human factors engineering in aerospace design with XR simulations, focusing on improving cockpit layouts, pilot comfort, and crew safety. Students can design ergonomic cockpits, control panels, and crew seating arrangements while addressing the challenges of pilot workload reduction and enhancing the user interface. Interactive lessons provide valuable insights into optimizing design for both efficiency and safety, especially during emergency procedures. Real-time feedback on ergonomic efficiency, human-machine interaction, and compliance with safety regulations ensures students can apply best practices in their designs.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top