imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the key techniques for growing, maintaining, and handling cells in a laboratory setting.
  • Explore different types of culture media and their specific purposes and compositions.
  • Use virtual lab tools to culture cells, select media types, and monitor growth conditions.
  • Study cell differentiation processes and optimize conditions for cell growth and viability.
  • Interpret feedback from virtual lab simulations regarding cell viability and culture performance.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Tool Grinding and Sharpening

Explore the fundamentals of tool grinding and sharpening to optimize cutting tools for improved performance. This simulation features virtual grinding machines where users can sharpen various tools, including drill bits, lathe cutting tools, and milling cutters. Learn proper tool geometry, cutting angles, and sharpening techniques tailored to each tool type. Receive real-time feedback on tool sharpness, cutting efficiency, and proper selection of grinding wheels, ensuring tools are maintained to perform at their best.

Aerodynamics and Fluid Dynamics (CFD)

Explore the principles of aerodynamics and computational fluid dynamics (CFD) to analyze and optimize airflow around aircraft and spacecraft. Experience virtual simulations that allow you to visualize airflow patterns, pressure distribution, lift, drag, and turbulence across aerodynamic surfaces. Experiment with refining wing shapes, airfoils, and control surfaces to enhance flight performance. Gain insights through real-time feedback on aerodynamic efficiency, drag reduction, and flight stability in varying conditions.

Bioinformatics and Computational Biology

Explore bioinformatics tools and computational biology concepts through immersive XR experiences. Analyze biological data, model complex systems, and gain hands-on experience in DNA sequencing, protein structure analysis, and pathway mapping with interactive virtual labs and tutorials.

Building Automation Systems (BAS) and Smart HVAC

The Building Automation Systems (BAS) and Smart HVAC Simulation equips students with skills in installing and programming BAS to control HVAC systems, lighting, and other building systems in large commercial buildings. Students will engage in virtual scenarios to set up and program BAS systems, optimize energy use, and monitor the indoor climate. Interactive exercises will involve configuring smart thermostats, sensors, and networked devices for automated temperature and airflow control. Real-time feedback will focus on system efficiency, energy consumption, and troubleshooting networked components.

Renewable Energy Systems (Solar & Wind)

Learn how to install and maintain renewable energy systems, including solar photovoltaic (PV) systems and wind turbines. Through virtual simulations, students will install solar panels, inverters, and battery systems in both residential and commercial settings. They will also practice wiring wind turbines and integrating them with grid systems or off-grid installations. Real-time feedback will be provided on energy generation efficiency, grid tie-in, and troubleshooting renewable energy systems.

Structural Analysis and Design

This XR simulation teaches students the principles of structural analysis and the design of buildings, bridges, and other infrastructures. Virtual scenarios allow students to analyze the strength, stability, and behavior of structures under various loads (e.g., dead loads, live loads, wind loads, seismic loads). Students use interactive tools to design beams, columns, trusses, and frames, selecting materials like steel, concrete, and timber. The simulation provides feedback on stress distribution, load-bearing capacity, safety factors, and compliance with engineering standards, helping students make sound design decisions.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top