imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Identify and differentiate between various surgical instruments and their specific uses.
  • Understand and apply sterile handling techniques for maintaining aseptic conditions.
  • Demonstrate proper passing of instruments to the surgeon during simulated procedures.
  • Develop coordination and timing skills critical for efficient surgical assistance.
  • Recognize the importance of instrument organization for streamlined surgical workflow.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Aircraft Safety Protocols and Hazard Management

Provide training on critical safety protocols and hazard management techniques within aviation maintenance environments. Virtual scenarios simulate hazardous conditions like fuel spills, fires, electrical shocks, and chemical exposure, with interactive lessons on emergency response, PPE usage, and safety checks. Feedback is given on risk assessment, hazard mitigation, and adherence to safety guidelines.

Vehicle Diagnostics and Maintenance

Vehicle Diagnostics and Maintenance focuses on vehicle diagnostics, troubleshooting, and routine maintenance procedures. Students will use virtual diagnostic tools to identify issues in various vehicle systems, including the engine, transmission, electrical systems, and brakes. They will also learn how to use OBD-II scanners to read error codes, perform repairs, and apply preventative maintenance strategies.

Cardiovascular Devices and Hemodynamics Simulation

Train students in the design and analysis of cardiovascular devices with a focus on hemodynamics and fluid flow through immersive XR simulations. Students will simulate blood flow dynamics and design key devices like stents, heart valves, pacemakers, and vascular grafts, optimizing performance and minimizing complications.

Rocket Propulsion and Launch Systems

Explore the principles of rocket propulsion and the dynamics of launch systems through XR-powered simulations. Students engage in virtual rocket labs where they design and analyze rocket engines, simulate propellant flow, and study thrust and trajectory. Interactive scenarios allow students to gain a deeper understanding of staging, ignition sequences, and flight stability during launch, with feedback provided on propulsion efficiency, fuel consumption, and optimization of launch trajectories.

Thermodynamics and Heat Transfer

Provide hands-on experience in understanding thermodynamic processes and heat transfer mechanisms through immersive XR simulations. Virtual labs enable students to simulate processes like conduction, convection, and radiation across various materials and environments. Interactive scenarios allow exploration of thermodynamic cycles, such as the Rankine, Brayton, and Carnot cycles, offering a comprehensive understanding of energy systems. Real-time feedback helps students analyze temperature distribution, energy efficiency, and system optimization, fostering practical insights into thermodynamics and heat transfer in engineering applications.

Kinematics and Dynamics of Machines

Train students in analyzing the motion and dynamics of mechanical systems and linkages using immersive XR simulations. Students will interact with virtual models of mechanisms such as gears, cams, pulleys, and crankshafts to observe and study their movement. The simulation offers interactive lessons on calculating velocities, accelerations, forces, and torques within mechanical linkages, with real-time feedback. The system will help students understand how to evaluate and optimize the efficiency of machines, force transmission, and performance.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top