imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Gain a comprehensive understanding of satellite communication systems, including transponders, antennas, and communication links.
  • Engage in hands-on simulations for designing satellite systems and optimizing their configurations for efficient data transmission.
  • Learn about signal processing, frequency modulation, and data encryption techniques to ensure secure communication.
  • Analyze the impact of signal interference on system performance, with strategies to minimize its effects.
  • Receive feedback on communication efficiency, signal strength, and data transmission speed in various satellite scenarios.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Engine Design and Powertrain Systems

Explore the intricate world of engine design and powertrain systems in a fully immersive XR environment. This simulation allows students to engage with virtual 3D models of both gasoline and diesel engines. Students can disassemble, study, and reassemble components like pistons, cylinders, crankshafts, and fuel injectors to understand their function and interaction.

Welding Automation and Robotic Welding Simulation

The Welding Automation and Robotic Welding Simulation leverages XR to immerse users in operating and programming automated welding systems. Participants configure robotic arms for tasks like repetitive joints or intricate components, fine-tune welding parameters, and monitor processes for optimal performance. Feedback ensures proper setup, weld precision, and efficiency in industrial scenarios.

CRISPR Technology and Applications

Gain insights into CRISPR technology through immersive XR simulations, focusing on its advanced applications in gene editing, diagnostics, and therapeutic development. Apply CRISPR techniques in agriculture, medicine, and genetic research to design experiments, target DNA regions, and address real-world challenges.

Smart Home and Automation Systems

Explore modern electrical systems, focusing on smart home automation for lighting, HVAC, and security. Through virtual simulations, students will install and configure smart lighting, thermostats, cameras, and voice-activated devices. They will practice setting up and troubleshooting Wi-Fi-enabled smart home devices, learning to integrate them with traditional electrical systems. Real-time feedback will be provided on compatibility, system efficiency, and connectivity troubleshooting.

Lighting Systems Installation and Troubleshooting

Learn how to install and troubleshoot lighting systems, including incandescent, fluorescent, and LED lighting. Through virtual simulations, students will practice installing lighting circuits, switches, and dimmers in both residential and commercial settings. Scenarios will involve troubleshooting common issues such as flickering, burned-out bulbs, or short circuits. Real-time feedback will be provided on energy efficiency, circuit load, and system reliability.

Vibration Analysis and Mechanical Resonance

This XR simulation enables students to analyze vibration patterns and mechanical resonance in rotating and reciprocating systems. They will interact with virtual scenarios where they can examine vibration frequencies, amplitudes, and damping within mechanical structures. The simulation guides students through detecting resonance, identifying sources of vibration, and implementing solutions to reduce noise and wear. Real-time feedback will focus on vibration analysis, system stability, and reliability, providing students with the skills to ensure the durability and optimal performance of mechanical systems.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top