imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Gain a comprehensive understanding of satellite communication systems, including transponders, antennas, and communication links.
  • Engage in hands-on simulations for designing satellite systems and optimizing their configurations for efficient data transmission.
  • Learn about signal processing, frequency modulation, and data encryption techniques to ensure secure communication.
  • Analyze the impact of signal interference on system performance, with strategies to minimize its effects.
  • Receive feedback on communication efficiency, signal strength, and data transmission speed in various satellite scenarios.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Pavement Design and Analysis (XR)

Explore the principles of designing durable and efficient pavements for roads, highways, and airfields. Students can engage in virtual scenarios to design flexible and rigid pavement layers, select materials, and analyze the effects of traffic loads. Interactive tools guide them in determining pavement thickness, stress distribution, and conducting life cycle analyses. Feedback emphasizes durability, cost optimization, and long-term maintenance strategies.

Machining Materials and Tool Selection

Provide hands-on training in selecting and machining various materials, including steel, aluminum, brass, and plastics. Through virtual XR simulations, students will match materials with the correct cutting tools based on hardness, toughness, and machinability. They will practice adjusting cutting parameters, like speed, feed rates, and depth of cut, ensuring optimal performance and longevity of tools in real-time machining scenarios. This immersive experience will help students understand material behavior and improve machining efficiency in both manual and CNC operations.

Spacecraft Design and Orbital Mechanics

Dive into the design and analysis of spacecraft for space missions, focusing on key components like propulsion, thermal control, and communication systems. Use virtual tools to create satellites, space probes, and crewed spacecraft while mastering the principles of orbital mechanics. Learn to calculate orbital trajectories, understand gravitational effects, and simulate spacecraft maneuvering in space. Receive feedback on mission planning, fuel efficiency, and spacecraft stability in various orbits to optimize space exploration projects.

Plumbing Fixture Installation Simulation

Learn to install common plumbing fixtures such as sinks, toilets, faucets, and showers. This simulation provides virtual practice in connecting supply lines, traps, and drainage systems. It includes techniques for leveling and securing fixtures to prevent leaks and ensure proper functionality. Feedback is provided on installation quality, water pressure, and fixture operation.

Sustainability and Energy Efficiency in Mechatronics

Explore the principles of sustainable mechatronics design, with a focus on energy efficiency and resource management. Through virtual simulations, students will analyze the energy consumption of various mechatronic systems and processes, engage in interactive scenarios to optimize systems for energy efficiency, reduce waste, and improve sustainability. Real-time feedback on energy usage, cost savings, and environmental impact helps students refine their design choices for maximum sustainability.

Landing Gear Systems and Hydraulic Maintenance

Explore XR-based simulations for servicing and maintaining aircraft landing gear systems, with a focus on hydraulic and mechanical components. Students will inspect, repair, and replace landing gear assemblies, shock absorbers, tires, and brakes, while learning about hydraulic system operation and fluid checks. Real-time feedback ensures accurate troubleshooting and landing gear reliability.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top