imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Teach students the fundamentals of designing and simulating feedback control systems using PID controllers for mechanical and electrical applications.
  • Provide hands-on experience with interactive simulations of closed-loop systems for controlling variables like speed, temperature, or position.
  • Enable students to analyze and tune control systems for optimal performance, ensuring effective regulation of system variables.
  • Enhance understanding of control system stability, response times, and error minimization through real-time feedback.
  • Foster critical thinking by allowing students to adjust control parameters and assess their impact on system performance in various applications.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Fixture Design and Workholding Techniques

Explore XR-based simulations for designing and using fixtures, jigs, and workholding devices for machining complex parts. Students will engage in virtual fixture design, learning to create custom fixtures to hold irregularly shaped workpieces securely. The interactive lessons cover clamping techniques, workpiece alignment, and ensuring rigidity during cutting operations. Real-time feedback helps students assess the effectiveness of their fixture designs, machining stability, and part accuracy, all while improving their ability to handle complex machining tasks.

Neural Engineering and Brain-Computer Interfaces (BCIs)

Immerse students in the design and testing of neural interfaces that connect the brain to external devices, such as prosthetic limbs and communication aids. Through advanced XR simulations, students will develop and refine brain-computer interfaces (BCIs), analyze EEG signals, and create algorithms for neural control.

Pavement Design and Analysis (XR)

Explore the principles of designing durable and efficient pavements for roads, highways, and airfields. Students can engage in virtual scenarios to design flexible and rigid pavement layers, select materials, and analyze the effects of traffic loads. Interactive tools guide them in determining pavement thickness, stress distribution, and conducting life cycle analyses. Feedback emphasizes durability, cost optimization, and long-term maintenance strategies.

Structural Welding and Pipe Welding Simulations

The Structural Welding and Pipe Welding Simulations utilize XR to immerse users in realistic scenarios for welding structural components and pipes, emphasizing construction and industrial techniques.

Engine Design and Powertrain Systems

Explore the intricate world of engine design and powertrain systems in a fully immersive XR environment. This simulation allows students to engage with virtual 3D models of both gasoline and diesel engines. Students can disassemble, study, and reassemble components like pistons, cylinders, crankshafts, and fuel injectors to understand their function and interaction.

Propulsion Systems and Engine Design

Immerse yourself in the world of propulsion systems with an in-depth exploration of jet engines, rockets, and electric propulsion systems. Through virtual labs, gain hands-on experience in analyzing key engine components, including compressors, turbines, combustion chambers, and nozzles. Engage with interactive simulations that simulate fuel efficiency, thrust generation, and thermal management in propulsion systems, while optimizing engine performance for various operational conditions.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top