imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the fundamental concepts of biochemical pathways and their roles in microbial metabolism.
  • Use virtual labs to visualize and analyze metabolic pathways, identify key intermediates, and understand their interconnected processes.
  • Participate in interactive tutorials on pathway optimization, flux analysis, and genetic modifications to re-engineer microbes for specific product synthesis.
  • Experiment with virtual tools to modify microbial strains and optimize their efficiency in producing desired biochemicals.
  • Explore virtual case studies to evaluate the sustainability of metabolic engineering processes, considering environmental and economic factors.
  • Develop strategies to create eco-friendly and cost-effective biochemical production methods, prioritizing waste reduction and energy efficiency.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Fluid Dynamics and Computational Fluid Dynamics (CFD)

Enhance your understanding of fluid dynamics principles and their application in engineering systems through XR-powered simulations.

Mechanics of Solids and Fluids

Equip students with the foundational knowledge of solid mechanics and fluid dynamics, key principles in engineering applications. This course focuses on understanding the behavior of solid materials under stress and strain, as well as the movement of fluids within various engineering systems. Students will explore how these principles interact to optimize structural designs and fluid-based systems.

Geospatial Analysis and Remote Sensing

Explore the power of remote sensing technology and its application in civil engineering projects. Analyze satellite imagery and aerial photographs to map terrain, plan land use, and track urban development. Use geospatial data tools to detect changes in natural resources, land features, and environmental conditions. Receive feedback on data accuracy, interpretation, and the practical integration of this information into infrastructure planning.

Landing Gear Systems and Hydraulic Maintenance

Explore XR-based simulations for servicing and maintaining aircraft landing gear systems, with a focus on hydraulic and mechanical components. Students will inspect, repair, and replace landing gear assemblies, shock absorbers, tires, and brakes, while learning about hydraulic system operation and fluid checks. Real-time feedback ensures accurate troubleshooting and landing gear reliability.

Circuit Design and Troubleshooting

Explore the design and troubleshooting of electrical circuits by simulating various scenarios, including short circuits, overloads, and wiring faults. Students will create, test, and simulate different electrical circuits, such as parallel, series, and combination circuits. Using virtual multimeters and other testing tools, students will diagnose and resolve common circuit faults while receiving real-time feedback on their designs and troubleshooting methods.

Transmission Systems and Gearbox Design

This module focuses on automotive transmission systems, including manual, automatic, and CVTs. It provides students with a hands-on approach to understanding the design and functionality of various transmission components such as gears, clutches, and differentials. Through virtual simulations, students will learn about gear ratio calculations, shifting mechanisms, and the optimization of power transmission in vehicles.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top