imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the fundamental concepts of biochemical pathways and their roles in microbial metabolism.
  • Use virtual labs to visualize and analyze metabolic pathways, identify key intermediates, and understand their interconnected processes.
  • Participate in interactive tutorials on pathway optimization, flux analysis, and genetic modifications to re-engineer microbes for specific product synthesis.
  • Experiment with virtual tools to modify microbial strains and optimize their efficiency in producing desired biochemicals.
  • Explore virtual case studies to evaluate the sustainability of metabolic engineering processes, considering environmental and economic factors.
  • Develop strategies to create eco-friendly and cost-effective biochemical production methods, prioritizing waste reduction and energy efficiency.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Troubleshooting HVAC Systems

The Troubleshooting HVAC Systems Simulation teaches users how to troubleshoot common HVAC problems such as system malfunctions, low refrigerant, faulty components, and poor airflow. The simulation includes virtual diagnostic tools like multimeters, pressure gauges, and thermometers to test system components. Interactive fault scenarios guide students in diagnosing and repairing issues such as refrigerant leaks, compressor failures, and blocked filters. Real-time feedback is provided on problem diagnosis, repair accuracy, and system recovery.

Non-Invasive Ventilation (NIV) Techniques

Explore non-invasive ventilation (NIV) techniques, including CPAP and BiPAP, for managing respiratory insufficiency in patients. This training offers interactive scenarios to develop skills in device setup, monitoring, and patient management.

Chiller System Installation and Maintenance

The Chiller System Installation and Maintenance Simulation trains students on the installation, maintenance, and troubleshooting of chiller systems used in commercial buildings for large-scale cooling applications. Students will practice virtually installing air-cooled and water-cooled chiller systems, connecting them to cooling towers and air handlers. Maintenance tasks include cleaning chiller tubes, monitoring refrigerant levels, and inspecting compressors. Troubleshooting scenarios will focus on issues like reduced cooling capacity, refrigerant leaks, and mechanical failures. Real-time feedback will be provided on system performance, energy consumption, and efficiency optimization.

Aircraft Systems Integration Testing

XR-enabled simulation for aircraft systems integration testing, ensuring seamless functionality across avionics, propulsion, hydraulics, and flight control systems. Virtual scenarios allow for testing, troubleshooting, and data interpretation to optimize overall aircraft performance and readiness.

Failure Mode and Effects Analysis (FMEA) Simulation

Gain expertise in Failure Mode and Effects Analysis (FMEA) through immersive XR simulations. Learn to systematically identify, assess, and mitigate potential failure points in semiconductor manufacturing processes to enhance reliability and quality.

Drainage, Waste, and Vent (DWV) System Installation

Familiarize with Drainage, Waste, and Vent (DWV) systems essential for removing wastewater and preventing sewer gases from entering buildings. In this simulation, the virtual installation of drainage pipes, waste stacks, and vent pipes in various building types is explored. Proper pipe sloping for efficient drainage and venting is practiced, with real-time feedback on system functionality, code compliance, and troubleshooting clogs or vent issues. XR technology enhances the experience, offering immersive and interactive learning.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top