imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the fundamental concepts of biochemical pathways and their roles in microbial metabolism.
  • Use virtual labs to visualize and analyze metabolic pathways, identify key intermediates, and understand their interconnected processes.
  • Participate in interactive tutorials on pathway optimization, flux analysis, and genetic modifications to re-engineer microbes for specific product synthesis.
  • Experiment with virtual tools to modify microbial strains and optimize their efficiency in producing desired biochemicals.
  • Explore virtual case studies to evaluate the sustainability of metabolic engineering processes, considering environmental and economic factors.
  • Develop strategies to create eco-friendly and cost-effective biochemical production methods, prioritizing waste reduction and energy efficiency.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Water Resources and Hydraulic Engineering

This XR simulation trains students in the principles of fluid mechanics, open channel flow, and water resource management. Students explore hydraulic systems such as dams, culverts, canals, and pipelines to study water flow behavior in real-world scenarios. Interactive lessons guide students through the design of drainage systems, flood control measures, and irrigation networks. The simulation provides feedback on water flow efficiency, pressure distribution, and flood risk mitigation to help students understand the critical aspects of water resource management and hydraulic engineering.

Underwater Welding Basics Simulation

The Underwater Welding Basics Simulation introduces students to the unique challenges faced by underwater welders in industries like marine, oil, and gas. This simulation allows students to virtually practice underwater welding, including the use of specialized equipment and managing visibility and pressure conditions. It also covers safety protocols, dive techniques, and the key differences between wet and dry welding. Students receive real-time feedback on managing electrical current, welding speed, and ensuring the quality of welds in an underwater environment.

Spacecraft Design and Orbital Mechanics

Dive into the design and analysis of spacecraft for space missions, focusing on key components like propulsion, thermal control, and communication systems. Use virtual tools to create satellites, space probes, and crewed spacecraft while mastering the principles of orbital mechanics. Learn to calculate orbital trajectories, understand gravitational effects, and simulate spacecraft maneuvering in space. Receive feedback on mission planning, fuel efficiency, and spacecraft stability in various orbits to optimize space exploration projects.

Building Information Modeling (BIM)

Enhance understanding of BIM technology for planning, designing, and managing construction projects. Students can explore virtual environments to create 3D models of buildings and infrastructure, visualize construction phases, and estimate costs. Interactive tools enable the identification of design clashes and foster improved coordination across project stages. Feedback ensures precision in design, cost-effectiveness, and construction feasibility.

Heat Pump Installation and Troubleshooting

The Heat Pump Installation and Troubleshooting Simulation trains students on the installation, operation, and troubleshooting of heat pumps in both heating and cooling modes. The simulation includes virtual scenarios for installing air-source and geothermal heat pumps, covering refrigerant line connections, electrical wiring, and thermostat setup. Students practice operating heat pumps, switching between heating and cooling modes, and troubleshooting issues such as defrost cycle problems, refrigerant flow issues, and reversing valve malfunctions. Real-time feedback is provided on system performance, heat transfer efficiency, and troubleshooting accuracy.

Wind Tunnel Testing and Aerodynamic Optimization

Gain hands-on experience in wind tunnel testing to study the aerodynamic behavior of aircraft models and optimize designs for improved flight performance. Using virtual wind tunnel environments, students will explore how lift, drag, and flow separation are affected by various aerodynamic factors. With interactive tools, they can adjust test conditions like wind speed, angle of attack, and turbulence levels, while receiving feedback on optimizing wing and fuselage shapes for maximum efficiency.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top