imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the fundamental concepts of biochemical pathways and their roles in microbial metabolism.
  • Use virtual labs to visualize and analyze metabolic pathways, identify key intermediates, and understand their interconnected processes.
  • Participate in interactive tutorials on pathway optimization, flux analysis, and genetic modifications to re-engineer microbes for specific product synthesis.
  • Experiment with virtual tools to modify microbial strains and optimize their efficiency in producing desired biochemicals.
  • Explore virtual case studies to evaluate the sustainability of metabolic engineering processes, considering environmental and economic factors.
  • Develop strategies to create eco-friendly and cost-effective biochemical production methods, prioritizing waste reduction and energy efficiency.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Medical Imaging Techniques

Enhance students' understanding of medical imaging techniques such as MRI, CT, ultrasound, and X-ray through immersive XR simulations. This interactive platform allows students to control virtual imaging equipment, visualize real-time results, and interpret medical images to identify anatomical structures and diagnose conditions effectively.

Water Conservation and Green Plumbing Systems

Explore virtual scenarios for installing water-efficient fixtures and designing sustainable plumbing systems such as rainwater harvesting and greywater recycling. Learn how to implement eco-friendly solutions to reduce water usage and environmental impact. Receive feedback on system efficiency and water conservation effectiveness.

Biomedical Signal Processing and Analysis

Equip students with the skills to acquire, process, and analyze biomedical signals such as ECG, EEG, EMG, and blood pressure. Using interactive simulations, learners will explore signal collection from virtual patients, apply signal processing techniques, and interpret data for diagnosing medical conditions.

Chassis Design and Structural Analysis

Explore the principles of chassis design and structural analysis, leveraging XR simulations to study load distribution, material selection, and crashworthiness.

Mechatronic Systems Troubleshooting Simulation

Provide students with XR-based scenarios to diagnose and troubleshoot common issues in mechatronic systems, including electrical, mechanical, and software faults. Using virtual diagnostic tools like multimeters, oscilloscopes, and logic analyzers, students will identify and resolve system faults such as sensor failures, PLC logic errors, and mechanical misalignments. Real-time feedback will help refine troubleshooting approaches and improve problem-solving efficiency in an immersive XR environment.

Vibration Analysis and Mechanical Resonance

This XR simulation enables students to analyze vibration patterns and mechanical resonance in rotating and reciprocating systems. They will interact with virtual scenarios where they can examine vibration frequencies, amplitudes, and damping within mechanical structures. The simulation guides students through detecting resonance, identifying sources of vibration, and implementing solutions to reduce noise and wear. Real-time feedback will focus on vibration analysis, system stability, and reliability, providing students with the skills to ensure the durability and optimal performance of mechanical systems.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top