imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Identify and describe the operation of different electrical machines: induction, synchronous, DC, and stepper motors, and generators.
  • Operate and test virtual models of motors and generators, analyzing performance characteristics and operational behavior.
  • Understand and apply control methods such as Variable Frequency Drives (VFDs) and soft starters for motor speed and torque control.
  • Analyze torque-speed curves and determine the relationship between motor performance, efficiency, and load conditions.
  • Apply techniques to improve system efficiency by analyzing and implementing power factor correction strategies.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Environmental Engineering and Sustainability

Explore the principles of environmental engineering and sustainable design to address environmental challenges.

Photolithography Process Simulation

Learn the essential photolithography process in semiconductor manufacturing through immersive XR simulations. Experience virtual hands-on training in masking, exposure, and developing, while mastering equipment operation and alignment precision.

CNC Programming and Machining

Explore CNC programming and machining with XR simulations, providing hands-on experience in automated production for various machining operations.

Basic Welding Techniques Simulation

The Basic Welding Techniques Simulation provides hands-on practice with key welding methods including MIG, TIG, Stick, and Oxy-Acetylene welding. The simulation allows users to adjust parameters like power, speed, and angle to optimize weld quality. With XR integration, learners can interact with realistic tools and environments for a fully immersive experience.

Mechanical Systems Design and Integration

Mechanical Systems Design and Integration offers hands-on experience in designing and integrating mechanical systems with electrical components and sensors. Students will engage in virtual assembly of mechanical systems, such as gears, motors, and actuators, while integrating sensors and control systems to automate processes. Real-time feedback on system performance, including power consumption, efficiency, and alignment, provides students with valuable insights to optimize designs and improve functionality.

Debris Removal

Enhance skills in safe and efficient debris removal techniques through XR simulations, optimizing safety and productivity in various work environments.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top