imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Identify and describe the operation of different electrical machines: induction, synchronous, DC, and stepper motors, and generators.
  • Operate and test virtual models of motors and generators, analyzing performance characteristics and operational behavior.
  • Understand and apply control methods such as Variable Frequency Drives (VFDs) and soft starters for motor speed and torque control.
  • Analyze torque-speed curves and determine the relationship between motor performance, efficiency, and load conditions.
  • Apply techniques to improve system efficiency by analyzing and implementing power factor correction strategies.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Emergency Scenarios Simulation

Prepare users to respond effectively to surgical emergencies using XR technology to simulate high-pressure situations such as cardiac arrest, hemorrhage, or instrument malfunction. Students will receive guidance on assisting the surgical team by managing instruments, preparing blood transfusions, and adjusting equipment during critical events, with real-time feedback on decision-making and response times.

Weld Defect Identification and Correction

The Weld Defect Identification and Correction simulation leverages XR technology to train participants in recognizing and addressing common welding defects, ensuring superior weld quality. Through interactive scenarios and real-time feedback, users refine their skills in diagnosing and rectifying flaws.

Building Automation Systems (BAS) and Smart HVAC

The Building Automation Systems (BAS) and Smart HVAC Simulation equips students with skills in installing and programming BAS to control HVAC systems, lighting, and other building systems in large commercial buildings. Students will engage in virtual scenarios to set up and program BAS systems, optimize energy use, and monitor the indoor climate. Interactive exercises will involve configuring smart thermostats, sensors, and networked devices for automated temperature and airflow control. Real-time feedback will focus on system efficiency, energy consumption, and troubleshooting networked components.

Cardiac Rhythm Interpretation and EKG Analysis

Immerse students in the art of reading and interpreting EKG rhythms for diagnosing cardiac conditions in critical situations. Through XR simulations, students will explore abnormalities such as tachycardia, bradycardia, and arrhythmias, while gaining insights into EKG analysis and appropriate clinical interventions.

Environmental Engineering and Sustainability

This XR simulation equips students with knowledge and skills in waste management, pollution control, and sustainable design practices. Students engage in virtual scenarios to design water treatment plants, air pollution control systems, and waste recycling facilities. Interactive lessons emphasize evaluating the environmental impact of construction projects and applying green building practices. The simulation provides feedback on reducing carbon footprints, improving energy efficiency, and achieving sustainability goals.

Thermodynamics and Heat Transfer

Provide hands-on experience in understanding thermodynamic processes and heat transfer mechanisms through immersive XR simulations. Virtual labs enable students to simulate processes like conduction, convection, and radiation across various materials and environments. Interactive scenarios allow exploration of thermodynamic cycles, such as the Rankine, Brayton, and Carnot cycles, offering a comprehensive understanding of energy systems. Real-time feedback helps students analyze temperature distribution, energy efficiency, and system optimization, fostering practical insights into thermodynamics and heat transfer in engineering applications.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top