imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Identify and describe the operation of different electrical machines: induction, synchronous, DC, and stepper motors, and generators.
  • Operate and test virtual models of motors and generators, analyzing performance characteristics and operational behavior.
  • Understand and apply control methods such as Variable Frequency Drives (VFDs) and soft starters for motor speed and torque control.
  • Analyze torque-speed curves and determine the relationship between motor performance, efficiency, and load conditions.
  • Apply techniques to improve system efficiency by analyzing and implementing power factor correction strategies.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Flight Simulation and Aircraft Dynamics

Explore the fundamentals of aircraft motion and dynamics in a hands-on virtual flight simulator. Gain an understanding of stability, control, and maneuverability by controlling aircraft under various conditions and analyzing pitch, roll, yaw, and acceleration. Interactive tutorials provide insights into how control surfaces and aerodynamic forces impact aircraft movement, while real-time feedback helps refine your skills in managing flight stability and maneuver efficiency.

Advanced Manufacturing Simulations

Explore and enhance your understanding of modern manufacturing processes such as additive manufacturing (3D printing) and smart factory environments. With XR simulations, students can engage in virtual assembly lines where IoT devices track performance and optimize production. Gain insights into advanced techniques like 3D printing, laser cutting, and automated inspection. Experience real-time feedback on system performance, process optimization, and predictive maintenance, all within an immersive XR environment.

Robotics and Mechatronics Integration

Provide students with hands-on experience in designing, programming, and integrating robotic systems with mechanical components through immersive XR simulations. Students will work with virtual robotic arms and mechatronic systems, programming movements, adjusting sensors, and controlling actuators. The simulation includes interactive scenarios for integrating mechanical and electronic systems using sensors, motors, and control logic. Students will receive real-time feedback on robotic precision, response time, and the overall performance of the integrated systems.

Packaging and Assembly Process Simulation

Explore semiconductor packaging and assembly through immersive XR simulations. Gain practical experience in virtual labs focused on die bonding, wire bonding, and encapsulation, while mastering techniques for equipment handling, defect inspection, and assembly precision.

Machining Tolerances and Fits

Explore XR-based simulations for machining parts to meet specified tolerances and selecting appropriate fits for mating components. Students will interact with virtual machining scenarios, adjusting parameters to achieve precise tolerances, whether it's clearance, interference, or transition fits. This experience provides a deeper understanding of machining precision, helping to avoid the production of undersized or oversized parts. Real-time feedback ensures that users can evaluate part quality, tolerance control, and fit accuracy for optimal machining results.

Concrete Technology and Mix Design

Enhance understanding of concrete mix design and its application in diverse construction scenarios. Students can experiment in virtual labs, selecting materials like cement, aggregates, water, and admixtures to create optimized concrete mixes. Interactive tests on properties such as compressive strength, workability, and durability provide practical insights. Feedback highlights efficiency, material selection, and strategies to achieve superior concrete performance.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top