imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Identify and describe the operation of different electrical machines: induction, synchronous, DC, and stepper motors, and generators.
  • Operate and test virtual models of motors and generators, analyzing performance characteristics and operational behavior.
  • Understand and apply control methods such as Variable Frequency Drives (VFDs) and soft starters for motor speed and torque control.
  • Analyze torque-speed curves and determine the relationship between motor performance, efficiency, and load conditions.
  • Apply techniques to improve system efficiency by analyzing and implementing power factor correction strategies.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Underwater Welding Basics Simulation

The Underwater Welding Basics Simulation introduces students to the unique challenges faced by underwater welders in industries like marine, oil, and gas. This simulation allows students to virtually practice underwater welding, including the use of specialized equipment and managing visibility and pressure conditions. It also covers safety protocols, dive techniques, and the key differences between wet and dry welding. Students receive real-time feedback on managing electrical current, welding speed, and ensuring the quality of welds in an underwater environment.

Material Science and Mechanical Properties Analysis

Introduce students to material properties, testing methods, and their applications in mechanical engineering through XR simulations. Students will engage in virtual material testing labs where they perform various tests such as tensile tests, hardness tests, impact tests, and fatigue analysis. The simulation includes interactive lessons on material properties like strength, ductility, toughness, and elasticity. Real-time feedback will help students understand material selection, suitability for specific applications, and how to optimize design for enhanced performance.

Threading Operations (Internal and External)

Train students to perform threading operations on both internal and external surfaces using lathe machines or hand-operated threading dies. Through XR simulations, students will practice cutting precise threads on bolts, shafts, and pipes, adjusting thread pitches, speeds, and maintaining proper tool alignment. The simulation provides hands-on experience with critical threading techniques, allowing students to gain proficiency in achieving accurate thread depths, uniformity, and fit for various applications.

Frozen Pipe Repair Simulation

Explore virtual scenarios for diagnosing and repairing frozen and burst pipes caused by cold weather. Practice locating burst sections, performing repairs or replacements, and insulating pipes to prevent future freezing. Receive feedback on repair effectiveness, insulation quality, and prevention techniques.

Interior Design and Ergonomics

This module focuses on designing vehicle interiors with an emphasis on ergonomics, comfort, and user interface. Students will utilize virtual tools to create ergonomic dashboards, seating arrangements, control panels, and infotainment systems. The course includes interactive lessons on optimizing the driver's cabin for accessibility, visibility, and ease of use, with feedback on interior design aesthetics, user comfort, and control layout efficiency.

Noise, Vibration, and Harshness (NVH) Control

Noise, Vibration, and Harshness (NVH) Control focuses on minimizing noise, vibration, and harshness (NVH) in vehicles to enhance driving comfort. Students will engage in virtual environments to analyze sources of noise and vibration in engine, transmission, and exhaust systems. The course includes interactive lessons on damping techniques, soundproofing materials, and vibration isolation, with feedback on NVH reduction, cabin comfort, and acoustics.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top