imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn to calculate heating and cooling loads based on building parameters like insulation, square footage, and climate.
  • Gain experience in sizing HVAC systems to meet calculated heating and cooling requirements.
  • Understand how system sizing impacts energy efficiency and occupant comfort.
  • Develop the ability to choose appropriate HVAC equipment for various building types and conditions.
  • Learn to optimize HVAC system performance by accurately balancing load calculations and equipment selection.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Door and Window Installation

The Door and Window Installation Simulation trains students to install doors, windows, and frames with precision, ensuring proper insulation and sealing. Virtual installation scenarios guide students through the process of installing pre-hung doors, sliding doors, and windows in various wall openings. Interactive tutorials focus on leveling frames, securing doors and windows, and sealing gaps for insulation. Real-time feedback is provided on installation techniques, weatherproofing, and frame alignment.

Engine Design and Powertrain Systems

Explore the intricate world of engine design and powertrain systems in a fully immersive XR environment. This simulation allows students to engage with virtual 3D models of both gasoline and diesel engines. Students can disassemble, study, and reassemble components like pistons, cylinders, crankshafts, and fuel injectors to understand their function and interaction.

Electromagnetics and Wave Propagation

The Electromagnetics and Wave Propagation module allows students to explore the principles of electromagnetic fields and wave propagation through virtual labs and interactive scenarios. By simulating key concepts, students gain insights into the behavior of electromagnetic waves, field interactions, and signal transmission across various media and systems.

Patient Assessment and Vital Signs Monitoring

The "Patient Assessment and Vital Signs Monitoring" module equips students with the essential skills to perform comprehensive patient assessments and monitor vital signs effectively. Through immersive virtual scenarios and interactive tutorials, learners will interact with virtual patients to measure and analyze critical health parameters, assess symptoms, and make informed clinical decisions. Real-time feedback ensures accuracy and reinforces data interpretation for improved clinical judgment.

Concrete Technology and Mix Design

Enhance understanding of concrete mix design and its application in diverse construction scenarios. Students can experiment in virtual labs, selecting materials like cement, aggregates, water, and admixtures to create optimized concrete mixes. Interactive tests on properties such as compressive strength, workability, and durability provide practical insights. Feedback highlights efficiency, material selection, and strategies to achieve superior concrete performance.

Renewable Energy Systems (Solar, Wind, and Battery Storage)

The Electromagnetics and Wave Propagation module offers virtual simulations of renewable energy systems, including solar power, wind turbines, and battery storage. Through interactive exercises, students analyze energy conversion efficiency, system design, and grid integration, gaining a deeper understanding of electromagnetic interactions and wave propagation in renewable energy technologies.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top