imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn to calculate heating and cooling loads based on building parameters like insulation, square footage, and climate.
  • Gain experience in sizing HVAC systems to meet calculated heating and cooling requirements.
  • Understand how system sizing impacts energy efficiency and occupant comfort.
  • Develop the ability to choose appropriate HVAC equipment for various building types and conditions.
  • Learn to optimize HVAC system performance by accurately balancing load calculations and equipment selection.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Surgical Instrument Identification and Handling

An immersive XR simulation designed to familiarize students with identifying, handling, and passing surgical instruments during procedures. The program emphasizes precision, timing, and adherence to sterile techniques in a virtual operating room.

Energy Efficiency and Green HVAC Technologies

The Energy Efficiency and Green HVAC Technologies Simulation provides students with hands-on experience in installing and operating energy-efficient HVAC systems and integrating green technologies like geothermal heat pumps, solar-assisted systems, and energy recovery ventilators (ERVs). Students will virtually install and operate these systems while measuring energy consumption and system performance. Scenarios include integrating renewable energy sources like solar panels into HVAC systems. Real-time feedback will focus on energy savings, system performance, and environmental impact.

Robotics and Unmanned Aerial Vehicles (UAVs)

Explore the world of designing, building, and controlling Unmanned Aerial Vehicles (UAVs) and aerospace robotics for autonomous flight. In this simulation, students will gain hands-on experience by programming UAVs for specific missions, including navigation, obstacle avoidance, and data collection. Using XR-enabled environments, students will interact with drone dynamics, sensor integration, and flight path optimization techniques, while receiving valuable feedback on UAV stability, control responses, and overall mission performance.

Interventional Radiology Procedures

Immerse students in the advanced field of interventional radiology through XR-enabled simulations. This training focuses on mastering minimally invasive, image-guided techniques used for diagnostics and therapeutic interventions.

Control Systems and Automation

This XR simulation trains students in designing and implementing control systems for automated mechanical processes. It provides virtual scenarios where students can program control systems, such as PID controllers, to regulate critical variables like temperature, speed, and pressure in automated systems. Interactive lessons cover feedback loops, sensors, and actuators used in automated machinery, with real-time feedback on the stability, precision, and response times of the control systems.

Fluid Mechanics and Computational Fluid Dynamics (CFD)

Teach students the principles of fluid dynamics through immersive XR simulations and hands-on practice with Computational Fluid Dynamics (CFD). Virtual scenarios allow students to simulate fluid flow in pipes, pumps, valves, and aerodynamic surfaces, offering a deep dive into the behavior of fluids in different environments. Students will use interactive tools to set up boundary conditions, generate meshes, and analyze flow patterns using CFD software. Real-time feedback focuses on improving flow efficiency, managing pressure drop, understanding turbulence, and optimizing design solutions.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top