imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the processes involved in installing gas lines for residential and commercial applications, including material and fitting selection.
  • Learn to perform gas line pressure testing and detect leaks using common methods such as soap bubbles and gas detectors.
  • Explore the importance of safety protocols during gas line installation and leak detection.
  • Develop skills to prevent gas leaks through proper installation techniques and maintenance practices.
  • Receive real-time feedback on gas line installation accuracy, leak detection efficiency, and adherence to safety standards.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Smart Home and Automation Systems

Explore modern electrical systems, focusing on smart home automation for lighting, HVAC, and security. Through virtual simulations, students will install and configure smart lighting, thermostats, cameras, and voice-activated devices. They will practice setting up and troubleshooting Wi-Fi-enabled smart home devices, learning to integrate them with traditional electrical systems. Real-time feedback will be provided on compatibility, system efficiency, and connectivity troubleshooting.

Mechanical System Design and Optimization

Enable students to design and optimize complex mechanical systems through XR simulations. The simulation offers virtual scenarios where students can create and refine mechanical systems like engines, HVAC systems, turbines, and gearboxes. They will use interactive tools to adjust system parameters, reduce weight, improve efficiency, and lower production costs. Real-time feedback will guide students on design constraints, feasibility, and cost-effectiveness, helping them develop the skills to optimize mechanical systems for peak performance.

Trauma Management and Injury Stabilization

Equip students with the skills needed to manage trauma patients through immersive XR simulations. Students will practice controlling bleeding, stabilizing fractures, and preventing shock in a variety of trauma scenarios, such as car accidents, falls, and gunshot wounds.

Fluid Mechanics and Computational Fluid Dynamics (CFD)

Teach students the principles of fluid dynamics through immersive XR simulations and hands-on practice with Computational Fluid Dynamics (CFD). Virtual scenarios allow students to simulate fluid flow in pipes, pumps, valves, and aerodynamic surfaces, offering a deep dive into the behavior of fluids in different environments. Students will use interactive tools to set up boundary conditions, generate meshes, and analyze flow patterns using CFD software. Real-time feedback focuses on improving flow efficiency, managing pressure drop, understanding turbulence, and optimizing design solutions.

Human Anatomy and Physiology Simulation

Provide an in-depth understanding of human anatomy and physiology with a focus on systems relevant to biomedical applications. Using immersive XR technology, students can explore and interact with virtual 3D models of the human body, gaining insights into organ systems, tissues, and cells and their implications for medical device design.

Mechatronic Systems Troubleshooting Simulation

Provide students with XR-based scenarios to diagnose and troubleshoot common issues in mechatronic systems, including electrical, mechanical, and software faults. Using virtual diagnostic tools like multimeters, oscilloscopes, and logic analyzers, students will identify and resolve system faults such as sensor failures, PLC logic errors, and mechanical misalignments. Real-time feedback will help refine troubleshooting approaches and improve problem-solving efficiency in an immersive XR environment.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top