imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the processes involved in installing gas lines for residential and commercial applications, including material and fitting selection.
  • Learn to perform gas line pressure testing and detect leaks using common methods such as soap bubbles and gas detectors.
  • Explore the importance of safety protocols during gas line installation and leak detection.
  • Develop skills to prevent gas leaks through proper installation techniques and maintenance practices.
  • Receive real-time feedback on gas line installation accuracy, leak detection efficiency, and adherence to safety standards.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Patient Preparation and Draping Simulation

Train students on proper patient preparation and draping techniques to maintain a sterile field and ensure patient safety before surgery.

Bridge Design and Analysis

Explore the principles of designing and analyzing a variety of bridges, such as suspension, truss, arch, and beam structures, through immersive XR simulations. Students can enhance their skills by creating virtual models, analyzing forces, and assessing structural behavior under dynamic loads. Engage in interactive scenarios to test bridge designs against real-world challenges, including wind, earthquakes, and traffic. Receive detailed feedback on load distribution, material optimization, and stability improvements to refine designs effectively.

Fatigue and Failure Analysis of Aerospace Components

Dive into the analysis of fatigue and failure in aerospace components with XR-powered simulations. In virtual scenarios, students analyze crack propagation, stress concentrations, and fatigue loading on critical parts of aircraft and spacecraft. Interactive lessons allow for predicting failure points, analyzing material fatigue, and learning techniques to implement design improvements to enhance component longevity. Real-time feedback is provided on component durability, the risk of failure, and adherence to safety standards.

Vehicle Diagnostics and Maintenance

Vehicle Diagnostics and Maintenance focuses on vehicle diagnostics, troubleshooting, and routine maintenance procedures. Students will use virtual diagnostic tools to identify issues in various vehicle systems, including the engine, transmission, electrical systems, and brakes. They will also learn how to use OBD-II scanners to read error codes, perform repairs, and apply preventative maintenance strategies.

Sensor and Actuator Integration Simulation

Sensor and Actuator Integration Simulation teaches students how to integrate various types of sensors (such as proximity, temperature, and pressure) with actuators in automated systems. Through hands-on simulations, students will virtually integrate sensors into control systems, monitor input data in real-time, and observe how actuators (such as motors, solenoids, and relays) respond to sensor inputs. The course provides valuable feedback on sensor accuracy, system responsiveness, and effective calibration techniques.

Human Factors and Ergonomics in Aerospace Design

Explore human factors engineering in aerospace design with XR simulations, focusing on improving cockpit layouts, pilot comfort, and crew safety. Students can design ergonomic cockpits, control panels, and crew seating arrangements while addressing the challenges of pilot workload reduction and enhancing the user interface. Interactive lessons provide valuable insights into optimizing design for both efficiency and safety, especially during emergency procedures. Real-time feedback on ergonomic efficiency, human-machine interaction, and compliance with safety regulations ensures students can apply best practices in their designs.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top