imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Apply concepts of stress, strain, and elasticity to analyze the mechanical behavior of solid materials under different loading conditions.
  • Use virtual simulations to calculate and interpret material deformation, understanding the limits of plastic and elastic deformation in engineering materials.
  • Utilize principles of fluid dynamics to analyze flow behaviors, pressure variations, and turbulence in fluid systems such as pipes, ducts, and open channels.
  • Apply mechanical and fluid system optimization techniques to improve structural designs and fluid flow efficiency in engineering applications.
  • Use virtual labs and simulations to identify and solve problems related to stress, strain, fluid flow, and system performance in practical engineering scenarios.
  • Assess the performance of materials and fluid systems under varying conditions, providing recommendations for improvements based on simulation results.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Electric Power Generation and Renewable Energy

The Electric Power Generation and Renewable Energy module trains students on both traditional and renewable power generation systems, emphasizing energy efficiency, sustainability, and environmental impact. Through virtual simulations, students analyze the operation and performance of various energy sources and plant designs.

Vehicle Dynamics and Performance Analysis

Delve into the science of vehicle dynamics with this immersive XR simulation. Students can explore vehicle stability, handling, and ride comfort in various scenarios, analyzing how factors like acceleration, braking, and cornering affect overall vehicle performance. Using virtual simulations, students can test different vehicle configurations, suspension systems, tire mechanics, and aerodynamics to optimize design for real-world conditions.

Laboratory Skills and Diagnostic Tests

The Laboratory Skills and Diagnostic Tests module provides nursing students with virtual lab experience to practice essential laboratory procedures and diagnostic tests. Through interactive simulations, students learn techniques for drawing blood, collecting urine samples, and performing tests like ECGs and blood glucose monitoring, while also mastering result interpretation and clinical decision-making.

High Voltage Engineering and Insulation Systems

The High Voltage Engineering and Insulation Systems module offers virtual training on high-voltage systems, focusing on insulation techniques and breakdown phenomena. Through interactive simulations, students explore the design, operation, and safety considerations of high-voltage equipment, ensuring optimal performance and reliability.

Thermal Stress Management and Warping Prevention Simulation

The Thermal Stress Management and Warping Prevention Simulation teaches students how to manage thermal stress and prevent material warping during the welding process. It includes virtual scenarios where temperature changes and thermal expansion are monitored while welding. Students engage in exercises to adjust their welding methods, preheat/postheat treatment, or apply clamping techniques to minimize warping. Feedback is given on thermal stress, material distortion, and the effectiveness of preventive measures to ensure high-quality welds.

Human Anatomy and Physiology Simulation

Provide an in-depth understanding of human anatomy and physiology with a focus on systems relevant to biomedical applications. Using immersive XR technology, students can explore and interact with virtual 3D models of the human body, gaining insights into organ systems, tissues, and cells and their implications for medical device design.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top