imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Apply concepts of stress, strain, and elasticity to analyze the mechanical behavior of solid materials under different loading conditions.
  • Use virtual simulations to calculate and interpret material deformation, understanding the limits of plastic and elastic deformation in engineering materials.
  • Utilize principles of fluid dynamics to analyze flow behaviors, pressure variations, and turbulence in fluid systems such as pipes, ducts, and open channels.
  • Apply mechanical and fluid system optimization techniques to improve structural designs and fluid flow efficiency in engineering applications.
  • Use virtual labs and simulations to identify and solve problems related to stress, strain, fluid flow, and system performance in practical engineering scenarios.
  • Assess the performance of materials and fluid systems under varying conditions, providing recommendations for improvements based on simulation results.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Mechanical System Design and Optimization

Enable students to design and optimize complex mechanical systems through XR simulations. The simulation offers virtual scenarios where students can create and refine mechanical systems like engines, HVAC systems, turbines, and gearboxes. They will use interactive tools to adjust system parameters, reduce weight, improve efficiency, and lower production costs. Real-time feedback will guide students on design constraints, feasibility, and cost-effectiveness, helping them develop the skills to optimize mechanical systems for peak performance.

Mechatronic Systems Troubleshooting Simulation

Provide students with XR-based scenarios to diagnose and troubleshoot common issues in mechatronic systems, including electrical, mechanical, and software faults. Using virtual diagnostic tools like multimeters, oscilloscopes, and logic analyzers, students will identify and resolve system faults such as sensor failures, PLC logic errors, and mechanical misalignments. Real-time feedback will help refine troubleshooting approaches and improve problem-solving efficiency in an immersive XR environment.

Genomics and Personalized Medicine

Gain insights into genomics and personalized medicine through immersive XR simulations, focusing on analyzing genetic data, identifying mutations, and designing targeted therapies. Explore precision medicine concepts, pharmacogenomics, and customizing treatments based on individual genetic profiles.

Control Systems and Automation

The Control Systems and Automation module provides students with a virtual environment to design, analyze, and simulate control systems. Through interactive exercises and simulations, students explore PID controllers, feedback loops, and control theory, gaining practical insights into optimizing system performance, ensuring stability, and mastering automation in industrial processes.

Lighting Systems Installation and Troubleshooting

Learn how to install and troubleshoot lighting systems, including incandescent, fluorescent, and LED lighting. Through virtual simulations, students will practice installing lighting circuits, switches, and dimmers in both residential and commercial settings. Scenarios will involve troubleshooting common issues such as flickering, burned-out bulbs, or short circuits. Real-time feedback will be provided on energy efficiency, circuit load, and system reliability.

Biomaterials and Tissue Engineering

Immerse students in the properties and applications of biomaterials used in implants, prosthetics, and tissue engineering through innovative virtual labs. Students will interact with biomaterials like polymers, ceramics, metals, and composites, and design tissue scaffolds for regenerative medicine, enhancing their understanding of material selection and biocompatibility.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top