imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the core principles of mechatronics and robotics, including the synergy between mechanical, electrical, and computer systems.
  • Gain hands-on experience in designing and programming robotic systems with actuators, sensors, and controllers.
  • Learn how to develop automation solutions for manufacturing processes using mechatronic and robotic principles.
  • Apply motion control and precision techniques to optimize robotic performance and task execution.
  • Receive feedback on robot efficiency, precision, and task performance to enhance system design and functionality.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Mechanical Systems Design and Integration

Mechanical Systems Design and Integration offers hands-on experience in designing and integrating mechanical systems with electrical components and sensors. Students will engage in virtual assembly of mechanical systems, such as gears, motors, and actuators, while integrating sensors and control systems to automate processes. Real-time feedback on system performance, including power consumption, efficiency, and alignment, provides students with valuable insights to optimize designs and improve functionality.

Automotive Aerodynamics and Wind Tunnel Testing

Gain insights into vehicle aerodynamics using XR-based wind tunnel simulations to optimize performance and fuel efficiency.

Material Science and Mechanical Properties Analysis

Introduce students to material properties, testing methods, and their applications in mechanical engineering through XR simulations. Students will engage in virtual material testing labs where they perform various tests such as tensile tests, hardness tests, impact tests, and fatigue analysis. The simulation includes interactive lessons on material properties like strength, ductility, toughness, and elasticity. Real-time feedback will help students understand material selection, suitability for specific applications, and how to optimize design for enhanced performance.

Genetic Engineering and Gene Editing

The Genetic Engineering and Gene Editing module trains students on techniques for modifying the genetic makeup of organisms. Through virtual tools and interactive lessons, students explore gene editing methods like CRISPR and gain insights into creating genetically modified organisms (GMOs) while considering ethical implications.

HVAC Load Calculation and System Sizing

The HVAC Load Calculation and System Sizing Simulation teaches students how to calculate heating and cooling loads and properly size HVAC systems for different buildings. Virtual tools are provided for load calculation, factoring in building insulation, square footage, number of occupants, and climate conditions. Students then engage in interactive scenarios to select the appropriate HVAC equipment based on the calculated loads. Real-time feedback is provided on the accuracy of system sizing, energy efficiency, and overall occupant comfort.

Heat Pump Installation and Troubleshooting

The Heat Pump Installation and Troubleshooting Simulation trains students on the installation, operation, and troubleshooting of heat pumps in both heating and cooling modes. The simulation includes virtual scenarios for installing air-source and geothermal heat pumps, covering refrigerant line connections, electrical wiring, and thermostat setup. Students practice operating heat pumps, switching between heating and cooling modes, and troubleshooting issues such as defrost cycle problems, refrigerant flow issues, and reversing valve malfunctions. Real-time feedback is provided on system performance, heat transfer efficiency, and troubleshooting accuracy.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top