imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
Create virtual embedded systems that interface with sensors, actuators, and communication modules for real-world applications. Integrate and control virtual sensors and actuators to perform tasks and gather data. Design systems that use communication protocols (e.g., I2C, SPI, UART) to enable data exchange between devices. Analyze and resolve errors in code and system integration, ensuring proper device communication and functionality. Evaluate system performance and optimize the integration of hardware and software components for efficiency.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Grounding and Bonding Simulation

Learn proper grounding and bonding techniques to prevent electrical shock and ensure system safety. Through virtual simulations, students will install grounding rods, wires, and bonding systems for electrical panels, appliances, and equipment. Interactive scenarios will allow testing of grounding systems with virtual testers and multimeters, providing real-time feedback on grounding integrity, system safety, and adherence to NEC standards.

Thermodynamics and Heat Transfer

Provide hands-on experience in understanding thermodynamic processes and heat transfer mechanisms through immersive XR simulations. Virtual labs enable students to simulate processes like conduction, convection, and radiation across various materials and environments. Interactive scenarios allow exploration of thermodynamic cycles, such as the Rankine, Brayton, and Carnot cycles, offering a comprehensive understanding of energy systems. Real-time feedback helps students analyze temperature distribution, energy efficiency, and system optimization, fostering practical insights into thermodynamics and heat transfer in engineering applications.

Immunology and Vaccine Development

Explore the principles of immunology and the development of vaccines and therapeutic antibodies through immersive XR experiences. Enhance understanding of immune responses, antigen-antibody interactions, and the design of immunotherapies with virtual labs and interactive tutorials.

Sensor and Actuator Integration Simulation

Sensor and Actuator Integration Simulation teaches students how to integrate various types of sensors (such as proximity, temperature, and pressure) with actuators in automated systems. Through hands-on simulations, students will virtually integrate sensors into control systems, monitor input data in real-time, and observe how actuators (such as motors, solenoids, and relays) respond to sensor inputs. The course provides valuable feedback on sensor accuracy, system responsiveness, and effective calibration techniques.

Molecular Biology and DNA Manipulation

The Molecular Biology and DNA Manipulation module introduces students to key concepts in molecular biology, focusing on DNA structure, replication, transcription, and translation. Through virtual labs and interactive tutorials, students explore essential laboratory techniques in genetic research and manipulation.

Geospatial Analysis and Remote Sensing

Explore the power of remote sensing technology and its application in civil engineering projects. Analyze satellite imagery and aerial photographs to map terrain, plan land use, and track urban development. Use geospatial data tools to detect changes in natural resources, land features, and environmental conditions. Receive feedback on data accuracy, interpretation, and the practical integration of this information into infrastructure planning.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top