The Microcontroller and Embedded Systems module provides virtual environments (e.g., Arduino, Raspberry Pi) where students can design, simulate, and test embedded systems. Through interactive exercises, students learn to interface sensors, actuators, and communication modules, while writing and debugging code to control devices effectively.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
Provide hands-on training in the calibration, maintenance, and troubleshooting of clinical equipment used in hospitals and research labs through immersive XR simulations. Students will interact with devices like ventilators, infusion pumps, ECG machines, and defibrillators to enhance their technical skills and ensure optimal device performance.
Learn how to prevent Electrostatic Discharge (ESD) damage through interactive XR simulations. Understand the critical measures required to protect sensitive semiconductor devices during fabrication, handling, and packaging processes.
Learn the essential photolithography process in semiconductor manufacturing through immersive XR simulations. Experience virtual hands-on training in masking, exposure, and developing, while mastering equipment operation and alignment precision.
Enhance troubleshooting skills with this simulation, which focuses on diagnosing and repairing common plumbing fixture issues like leaks, blockages, and faulty components. Virtual scenarios allow for the practice of disassembling and repairing fixtures, such as leaky faucets, clogged drains, and running toilets, with real-time feedback on repair effectiveness, problem-solving approaches, and fixture functionality.
Dive into the design and analysis of spacecraft for space missions, focusing on key components like propulsion, thermal control, and communication systems. Use virtual tools to create satellites, space probes, and crewed spacecraft while mastering the principles of orbital mechanics. Learn to calculate orbital trajectories, understand gravitational effects, and simulate spacecraft maneuvering in space. Receive feedback on mission planning, fuel efficiency, and spacecraft stability in various orbits to optimize space exploration projects.
Explore lathe operations for turning, facing, threading, and cutting with XR simulations, enhancing hands-on skills and ensuring precise machining.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.