The Microcontroller and Embedded Systems module provides virtual environments (e.g., Arduino, Raspberry Pi) where students can design, simulate, and test embedded systems. Through interactive exercises, students learn to interface sensors, actuators, and communication modules, while writing and debugging code to control devices effectively.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
Equip students with the foundational knowledge of solid mechanics and fluid dynamics, key principles in engineering applications. This course focuses on understanding the behavior of solid materials under stress and strain, as well as the movement of fluids within various engineering systems. Students will explore how these principles interact to optimize structural designs and fluid-based systems.
Explore XR-based simulations for maintaining and repairing avionics systems, including communication, navigation, and monitoring equipment. Students will engage with components like radar systems, transponders, flight control systems, and GPS, troubleshooting electrical issues, calibrating instruments, and updating software. Real-time feedback ensures optimal diagnostic accuracy, fault identification, and avionics performance.
Explore the principles of chassis design and structural analysis, leveraging XR simulations to study load distribution, material selection, and crashworthiness.
The Chiller System Installation and Maintenance Simulation trains students on the installation, maintenance, and troubleshooting of chiller systems used in commercial buildings for large-scale cooling applications. Students will practice virtually installing air-cooled and water-cooled chiller systems, connecting them to cooling towers and air handlers. Maintenance tasks include cleaning chiller tubes, monitoring refrigerant levels, and inspecting compressors. Troubleshooting scenarios will focus on issues like reduced cooling capacity, refrigerant leaks, and mechanical failures. Real-time feedback will be provided on system performance, energy consumption, and efficiency optimization.
Explore XR-based simulations for machining parts to meet specified tolerances and selecting appropriate fits for mating components. Students will interact with virtual machining scenarios, adjusting parameters to achieve precise tolerances, whether it's clearance, interference, or transition fits. This experience provides a deeper understanding of machining precision, helping to avoid the production of undersized or oversized parts. Real-time feedback ensures that users can evaluate part quality, tolerance control, and fit accuracy for optimal machining results.
Learn the essential skills for designing, installing, and maintaining septic systems, commonly used in rural settings. This simulation involves designing septic tanks, drain fields, and other key wastewater management components. It covers sizing septic systems based on household needs and soil percolation tests, with real-time feedback on layout, drainage performance, and troubleshooting septic issues such as backups or system failures.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.