The Microcontroller and Embedded Systems module provides virtual environments (e.g., Arduino, Raspberry Pi) where students can design, simulate, and test embedded systems. Through interactive exercises, students learn to interface sensors, actuators, and communication modules, while writing and debugging code to control devices effectively.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
This XR simulation trains students in the principles of fluid mechanics, open channel flow, and water resource management. Students explore hydraulic systems such as dams, culverts, canals, and pipelines to study water flow behavior in real-world scenarios. Interactive lessons guide students through the design of drainage systems, flood control measures, and irrigation networks. The simulation provides feedback on water flow efficiency, pressure distribution, and flood risk mitigation to help students understand the critical aspects of water resource management and hydraulic engineering.
Learn proper grounding and bonding techniques to prevent electrical shock and ensure system safety. Through virtual simulations, students will install grounding rods, wires, and bonding systems for electrical panels, appliances, and equipment. Interactive scenarios will allow testing of grounding systems with virtual testers and multimeters, providing real-time feedback on grounding integrity, system safety, and adherence to NEC standards.
Learn the process of installing electrical panels and breakers in residential, commercial, and industrial systems. Through virtual simulations, students will design and install electrical panels, wire breakers, and ensure the correct distribution of electrical loads. They will practice the proper techniques for panel installation, breaker selection, and safety measures while receiving feedback on system functionality and code compliance.
Learn the essential photolithography process in semiconductor manufacturing through immersive XR simulations. Experience virtual hands-on training in masking, exposure, and developing, while mastering equipment operation and alignment precision.
Explore the design and troubleshooting of motor control circuits used in industrial automation. In this simulation, students will virtually install and wire motor starters, relays, and control circuits for electric motors. They will program motor control systems, utilizing start/stop buttons, overload protection, and variable speed drives. The simulation offers real-time feedback on system performance, motor control accuracy, and troubleshooting techniques, enhanced with XR for an immersive learning experience.
Pneumatics and Hydraulics Simulation trains students in the operation and design of pneumatic and hydraulic systems, which are essential in many mechatronic applications. Through virtual simulations, students can design and control pneumatic and hydraulic circuits using components like valves, cylinders, pumps, and actuators. They will also control pressures and flow rates to perform tasks such as lifting, pressing, and clamping. Real-time feedback on system efficiency, fluid dynamics, and troubleshooting leaks or pressure issues enhances learning and system optimization.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.