The Microcontroller and Embedded Systems module provides virtual environments (e.g., Arduino, Raspberry Pi) where students can design, simulate, and test embedded systems. Through interactive exercises, students learn to interface sensors, actuators, and communication modules, while writing and debugging code to control devices effectively.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
Equip students with the foundational knowledge of solid mechanics and fluid dynamics, key principles in engineering applications. This course focuses on understanding the behavior of solid materials under stress and strain, as well as the movement of fluids within various engineering systems. Students will explore how these principles interact to optimize structural designs and fluid-based systems.
Explore the installation and maintenance of water heaters, including gas, electric, and tankless systems. This simulation allows for virtual installation of various water heaters, connecting supply and drainage lines, pressure relief valves, and gas lines (when applicable). It also provides practice in maintaining water heaters by flushing tanks, replacing heating elements, and adjusting thermostats. Real-time feedback is provided on system efficiency, safety, and troubleshooting issues like leaks or temperature fluctuations.
Provide an in-depth understanding of human anatomy and physiology with a focus on systems relevant to biomedical applications. Using immersive XR technology, students can explore and interact with virtual 3D models of the human body, gaining insights into organ systems, tissues, and cells and their implications for medical device design.
Empower students to master the design and function of drug delivery systems with a focus on microfluidic devices for precise medication administration. Through immersive simulations, students will design and test microfluidic devices, optimizing fluid dynamics and dosage control for various medical conditions.
The Siding Installation Simulation teaches students how to install exterior siding materials such as wood, vinyl, fiber cement, or metal. Students engage in virtual practice to measure, cut, and install siding materials on building walls. The simulation includes tutorials on aligning siding panels, securing them to the building frame, and adding trim pieces for a polished look. XR (Extended Reality) integration enhances the learning experience by allowing students to visualize the full-scale siding installation process and interact with 3D models of siding materials in a real-world setting.
Explore yield optimization and defect reduction through interactive XR simulations. Analyze manufacturing data, address common defects like contamination and etching errors, and implement strategies to improve process efficiency, product yield, and defect minimization.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.