The Microcontroller and Embedded Systems module provides virtual environments (e.g., Arduino, Raspberry Pi) where students can design, simulate, and test embedded systems. Through interactive exercises, students learn to interface sensors, actuators, and communication modules, while writing and debugging code to control devices effectively.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
Immerse in plasma processing through interactive XR simulations. Master key techniques for etching and deposition in semiconductor manufacturing, including reactive ion etching (RIE) and plasma-enhanced chemical vapor deposition (PECVD), with real-time process adjustments and optimization.
Explore the principles of thermal management in aerospace systems, focusing on efficient heat dissipation and insulation techniques for engines, fuselages, and spacecraft thermal control systems. Through virtual simulations, students will study the heat transfer processes including conduction, convection, and radiation, and apply them to real-world aerospace environments. Engage in interactive lessons to optimize thermal performance and ensure energy efficiency while preventing component overheating.
Introduce students to essential cell culture techniques and tissue engineering principles, focusing on growing and maintaining cells for research, therapeutic, and industrial purposes. Cover foundational knowledge for regenerative medicine and explore tissue constructs and cell differentiation.
Introduce students to material properties, testing methods, and their applications in mechanical engineering through XR simulations. Students will engage in virtual material testing labs where they perform various tests such as tensile tests, hardness tests, impact tests, and fatigue analysis. The simulation includes interactive lessons on material properties like strength, ductility, toughness, and elasticity. Real-time feedback will help students understand material selection, suitability for specific applications, and how to optimize design for enhanced performance.
Provide students with hands-on experience in designing, programming, and integrating robotic systems with mechanical components through immersive XR simulations. Students will work with virtual robotic arms and mechatronic systems, programming movements, adjusting sensors, and controlling actuators. The simulation includes interactive scenarios for integrating mechanical and electronic systems using sensors, motors, and control logic. Students will receive real-time feedback on robotic precision, response time, and the overall performance of the integrated systems.
The Pediatric Nursing Care Simulation module provides nursing students with virtual experiences to develop essential pediatric care skills. Students practice assessing health conditions, administering medications, and delivering age-appropriate care while interacting with children and collaborating with parents. The module also includes scenarios to handle pediatric emergencies and communication challenges.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.