The Microcontroller and Embedded Systems module provides virtual environments (e.g., Arduino, Raspberry Pi) where students can design, simulate, and test embedded systems. Through interactive exercises, students learn to interface sensors, actuators, and communication modules, while writing and debugging code to control devices effectively.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
This XR simulation trains students in the principles of fluid mechanics, open channel flow, and water resource management. Students explore hydraulic systems such as dams, culverts, canals, and pipelines to study water flow behavior in real-world scenarios. Interactive lessons guide students through the design of drainage systems, flood control measures, and irrigation networks. The simulation provides feedback on water flow efficiency, pressure distribution, and flood risk mitigation to help students understand the critical aspects of water resource management and hydraulic engineering.
An immersive XR simulation designed to familiarize students with identifying, handling, and passing surgical instruments during procedures. The program emphasizes precision, timing, and adherence to sterile techniques in a virtual operating room.
This XR simulation teaches students about the comprehensive processes involved in managing a product's lifecycle, from initial conception through design, development, production, and eventual retirement. Virtual tools allow students to coordinate product design, development, production, and sustainability, integrating CAD, CAM, and data management into the development cycle. Students will interact with real-world scenarios to optimize project timelines, resource allocation, and overall product lifecycle efficiency. Feedback is provided on their decisions related to production costs, environmental impact, and product sustainability.
The Woodworking Techniques and Joinery Simulation provides hands-on experience in various woodworking techniques and joinery methods used in carpentry projects. Virtual practice includes joinery techniques such as dovetail joints, mortise and tenon joints, lap joints, and miter joints. Interactive lessons guide students through cutting, sanding, and assembling wooden pieces with precision. Real-time feedback is provided on craftsmanship, joint strength, and finishing techniques.
Learn to install and maintain backup power systems, including generators and uninterruptible power supplies (UPS). In this simulation, students will virtually install backup generators, transfer switches, and UPS systems in both commercial and residential settings. They will also troubleshoot power outages and test backup systems. Real-time feedback will be provided on system reliability, generator sizing, and power load management.
The High Voltage Engineering and Insulation Systems module offers virtual training on high-voltage systems, focusing on insulation techniques and breakdown phenomena. Through interactive simulations, students explore the design, operation, and safety considerations of high-voltage equipment, ensuring optimal performance and reliability.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.