The Microcontroller and Embedded Systems module provides virtual environments (e.g., Arduino, Raspberry Pi) where students can design, simulate, and test embedded systems. Through interactive exercises, students learn to interface sensors, actuators, and communication modules, while writing and debugging code to control devices effectively.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
Explore the world of designing, building, and controlling Unmanned Aerial Vehicles (UAVs) and aerospace robotics for autonomous flight. In this simulation, students will gain hands-on experience by programming UAVs for specific missions, including navigation, obstacle avoidance, and data collection. Using XR-enabled environments, students will interact with drone dynamics, sensor integration, and flight path optimization techniques, while receiving valuable feedback on UAV stability, control responses, and overall mission performance.
Pneumatics and Hydraulics Simulation trains students in the operation and design of pneumatic and hydraulic systems, which are essential in many mechatronic applications. Through virtual simulations, students can design and control pneumatic and hydraulic circuits using components like valves, cylinders, pumps, and actuators. They will also control pressures and flow rates to perform tasks such as lifting, pressing, and clamping. Real-time feedback on system efficiency, fluid dynamics, and troubleshooting leaks or pressure issues enhances learning and system optimization.
Empower students to master the design and function of drug delivery systems with a focus on microfluidic devices for precise medication administration. Through immersive simulations, students will design and test microfluidic devices, optimizing fluid dynamics and dosage control for various medical conditions.
Engage in XR-based simulations to conduct detailed site assessments, evaluating environmental conditions, structures, and safety factors to ensure informed decision-making for project development.
Enhance troubleshooting skills with this simulation, which focuses on diagnosing and repairing common plumbing fixture issues like leaks, blockages, and faulty components. Virtual scenarios allow for the practice of disassembling and repairing fixtures, such as leaky faucets, clogged drains, and running toilets, with real-time feedback on repair effectiveness, problem-solving approaches, and fixture functionality.
The Power Electronics and Converters module provides virtual environments where students learn the fundamentals of power electronics, including AC-DC, DC-DC, and DC-AC converters. Through interactive simulations, students design, test, and analyze key power conversion circuits while focusing on efficiency, performance, and system optimization.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.