imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
Create virtual embedded systems that interface with sensors, actuators, and communication modules for real-world applications. Integrate and control virtual sensors and actuators to perform tasks and gather data. Design systems that use communication protocols (e.g., I2C, SPI, UART) to enable data exchange between devices. Analyze and resolve errors in code and system integration, ensuring proper device communication and functionality. Evaluate system performance and optimize the integration of hardware and software components for efficiency.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Biomechanics and Motion Analysis

Explore the principles of biomechanics and motion analysis through immersive XR simulations. Students will analyze human movement, understand forces acting on the body, and assess the performance of musculoskeletal systems in dynamic environments, enhancing their ability to apply these concepts to health, sports, and rehabilitation.

Manufacturing Processes Simulation

This XR simulation provides students with training on various manufacturing techniques such as machining, welding, casting, and 3D printing. Students will interact with virtual manufacturing environments, where they can operate CNC machines, 3D printers, and robotic assembly lines. The simulation includes interactive tutorials focused on optimizing production processes, generating toolpaths, and minimizing waste. Real-time feedback will help students assess manufacturing efficiency, material usage, and production quality, enabling them to enhance skills for modern manufacturing applications.

Surgical Instrument Identification and Handling

An immersive XR simulation designed to familiarize students with identifying, handling, and passing surgical instruments during procedures. The program emphasizes precision, timing, and adherence to sterile techniques in a virtual operating room.

Biochemical Pathways and Metabolic Engineering

Explore metabolic pathways and their engineering through immersive XR simulations, focusing on optimizing microbial processes to produce valuable biochemicals. Utilize virtual tools to study pathways, identify bottlenecks, and implement strategies for efficient metabolite production.

Mechatronic Systems Troubleshooting Simulation

Provide students with XR-based scenarios to diagnose and troubleshoot common issues in mechatronic systems, including electrical, mechanical, and software faults. Using virtual diagnostic tools like multimeters, oscilloscopes, and logic analyzers, students will identify and resolve system faults such as sensor failures, PLC logic errors, and mechanical misalignments. Real-time feedback will help refine troubleshooting approaches and improve problem-solving efficiency in an immersive XR environment.

Microbiology and Fermentation Processes

Equip students with essential microbiological techniques and the core principles of fermentation in bioprocessing, enhanced by immersive XR experiences. Focus on isolating, culturing, and identifying microbes, while exploring fermentation applications in industries like pharmaceuticals, biofuels, and enzymes through interactive virtual and augmented reality simulations.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top