The Microcontroller and Embedded Systems module provides virtual environments (e.g., Arduino, Raspberry Pi) where students can design, simulate, and test embedded systems. Through interactive exercises, students learn to interface sensors, actuators, and communication modules, while writing and debugging code to control devices effectively.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
Gain practical experience in etching and deposition, essential steps in semiconductor fabrication, through immersive XR simulations. Explore virtual labs that simulate dry and wet etching, along with deposition methods like CVD and PVD, with interactive controls and real-time feedback.
Robotics and Automation Simulation course allows students to explore the principles of robotics and automation in industrial settings. Through interactive XR simulations, students can program robotic arms, manipulators, and other equipment to perform tasks such as welding, assembly, and material handling. Real-time feedback on performance, efficiency, and safety ensures a hands-on, engaging learning experience, preparing students for real-world automation challenges.
Explore the design and troubleshooting of motor control circuits used in industrial automation. In this simulation, students will virtually install and wire motor starters, relays, and control circuits for electric motors. They will program motor control systems, utilizing start/stop buttons, overload protection, and variable speed drives. The simulation offers real-time feedback on system performance, motor control accuracy, and troubleshooting techniques, enhanced with XR for an immersive learning experience.
Explore the fundamental principles of statics, dynamics, and material behavior under various forces using XR-enhanced simulations to analyze and optimize structural components.
Explore the principles of environmental engineering and sustainable design to address environmental challenges.
Engage in semiconductor device design through interactive XR simulations. Design basic components like diodes, transistors, and integrated circuits using 2D/3D models, explore doping profiles, and evaluate performance characteristics with real-time feedback.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.