imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Explore various milling operations such as face milling, side milling, slotting, and drilling using XR simulations.
  • Enhance understanding of workholding techniques including the use of vises, clamps, and fixtures for secure material placement.
  • Improve decision-making in selecting the right cutting tools and adjusting machine settings for optimal performance.
  • Receive real-time feedback on milling precision, surface finish quality, and tool wear to ensure accurate results.
  • Develop troubleshooting skills for addressing common milling machine issues and improving operational efficiency.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Hydronic Heating Systems

The Hydronic Heating Systems Simulation trains students on hydronic heating systems, which use water to distribute heat throughout a building. Students can practice virtually installing and troubleshooting systems that include boilers, radiators, and piping systems. Interactive exercises focus on adjusting water flow rates, pressure settings, and temperature control for radiant heating. Real-time feedback is provided on system balance, heat distribution, and energy efficiency.

Product Lifecycle Management (PLM)

This XR simulation teaches students about the comprehensive processes involved in managing a product's lifecycle, from initial conception through design, development, production, and eventual retirement. Virtual tools allow students to coordinate product design, development, production, and sustainability, integrating CAD, CAM, and data management into the development cycle. Students will interact with real-world scenarios to optimize project timelines, resource allocation, and overall product lifecycle efficiency. Feedback is provided on their decisions related to production costs, environmental impact, and product sustainability.

Electrical Safety and Lockout/Tagout (LOTO) Simulation

Learn electrical safety protocols, focusing on Lockout/Tagout (LOTO) procedures to prevent accidental energizing of equipment during maintenance or repairs. Through virtual simulations, students will practice securing electrical circuits using LOTO procedures and identify potential hazards such as electrocution, arc flash, and fire. Real-time feedback will be provided on safety practices, risk assessment, and adherence to OSHA regulations.

Immunology and Vaccine Development

Explore the principles of immunology and the development of vaccines and therapeutic antibodies through immersive XR experiences. Enhance understanding of immune responses, antigen-antibody interactions, and the design of immunotherapies with virtual labs and interactive tutorials.

Engine Design and Powertrain Systems

Explore the intricate world of engine design and powertrain systems in a fully immersive XR environment. This simulation allows students to engage with virtual 3D models of both gasoline and diesel engines. Students can disassemble, study, and reassemble components like pistons, cylinders, crankshafts, and fuel injectors to understand their function and interaction.

Building Information Modeling (BIM)

Enhance understanding of BIM technology for planning, designing, and managing construction projects. Students can explore virtual environments to create 3D models of buildings and infrastructure, visualize construction phases, and estimate costs. Interactive tools enable the identification of design clashes and foster improved coordination across project stages. Feedback ensures precision in design, cost-effectiveness, and construction feasibility.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top