imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the core processes involved in the development and production of therapeutic proteins and monoclonal antibodies.
  • Use virtual labs to simulate protein expression systems, including recombinant DNA technology and cell cultures.
  • Participate in interactive simulations of the drug discovery pipeline, from target identification to compound screening.
  • Apply purification methods such as chromatography and filtration in virtual labs to optimize product yield and purity.
  • Engage in virtual tutorials covering preclinical testing protocols, clinical trials, and the development timeline for new biopharmaceuticals.
  • Understand the challenges and requirements for ensuring the safety, efficacy, and regulatory compliance of therapeutic compounds.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Power Systems and Distribution Networks

The Power Systems and Distribution Networks module immerses students in virtual environments where they explore the design, operation, and analysis of electrical power grids. Through simulations and interactive tutorials, students learn to manage generators, transformers, transmission lines, and load centers, while optimizing system performance, detecting faults, and ensuring efficient energy distribution.

Finite Element Analysis (FEA) Simulation

Train students to perform stress, strain, and deformation analysis on mechanical components using Finite Element Analysis (FEA) through immersive XR simulations. The virtual environment allows students to apply loads, constraints, and boundary conditions to 3D models of mechanical components, providing interactive lessons on stress distribution, thermal effects, vibration analysis, and material failure points. Feedback is provided on the structural integrity, safety factors, and optimization of mechanical designs to improve understanding and decision-making in engineering design processes.

Mechanical System Design and Optimization

Enable students to design and optimize complex mechanical systems through XR simulations. The simulation offers virtual scenarios where students can create and refine mechanical systems like engines, HVAC systems, turbines, and gearboxes. They will use interactive tools to adjust system parameters, reduce weight, improve efficiency, and lower production costs. Real-time feedback will guide students on design constraints, feasibility, and cost-effectiveness, helping them develop the skills to optimize mechanical systems for peak performance.

Robotics and Automation Simulation

Robotics and Automation Simulation course allows students to explore the principles of robotics and automation in industrial settings. Through interactive XR simulations, students can program robotic arms, manipulators, and other equipment to perform tasks such as welding, assembly, and material handling. Real-time feedback on performance, efficiency, and safety ensures a hands-on, engaging learning experience, preparing students for real-world automation challenges.

Basic Welding Techniques Simulation

The Basic Welding Techniques Simulation provides hands-on practice with key welding methods including MIG, TIG, Stick, and Oxy-Acetylene welding. The simulation allows users to adjust parameters like power, speed, and angle to optimize weld quality. With XR integration, learners can interact with realistic tools and environments for a fully immersive experience.

Material Handling and Welding Positioning

The Material Handling and Welding Positioning simulation uses XR to enhance proficiency in managing diverse materials and mastering welding across various positions. Interactive scenarios and real-time feedback build expertise in technique and adaptability.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top