imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the core processes involved in the development and production of therapeutic proteins and monoclonal antibodies.
  • Use virtual labs to simulate protein expression systems, including recombinant DNA technology and cell cultures.
  • Participate in interactive simulations of the drug discovery pipeline, from target identification to compound screening.
  • Apply purification methods such as chromatography and filtration in virtual labs to optimize product yield and purity.
  • Engage in virtual tutorials covering preclinical testing protocols, clinical trials, and the development timeline for new biopharmaceuticals.
  • Understand the challenges and requirements for ensuring the safety, efficacy, and regulatory compliance of therapeutic compounds.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Neural Engineering and Brain-Computer Interfaces (BCIs)

Immerse students in the design and testing of neural interfaces that connect the brain to external devices, such as prosthetic limbs and communication aids. Through advanced XR simulations, students will develop and refine brain-computer interfaces (BCIs), analyze EEG signals, and create algorithms for neural control.

Biomaterials and Tissue Engineering

Immerse students in the properties and applications of biomaterials used in implants, prosthetics, and tissue engineering through innovative virtual labs. Students will interact with biomaterials like polymers, ceramics, metals, and composites, and design tissue scaffolds for regenerative medicine, enhancing their understanding of material selection and biocompatibility.

Advanced Machining Techniques (5-Axis Machining, EDM)

Explore XR-driven simulations of advanced machining techniques such as 5-axis machining and Electrical Discharge Machining (EDM). Students will virtually operate 5-axis machining centers to perform multi-axis operations on intricate parts and use EDM to machine hard materials with high precision. These simulations provide valuable hands-on experience in mastering advanced manufacturing processes. Feedback on part complexity, machining accuracy, and process optimization helps refine skills.

Patient Assessment and Vital Signs Monitoring

Immerse students in the process of performing a comprehensive patient assessment and monitoring vital signs in emergency situations through XR simulations. Students will assess airway, breathing, circulation, and mental status while learning to measure pulse, blood pressure, respiration rate, and oxygen saturation.

Yield Optimization and Defect Reduction

Explore yield optimization and defect reduction through interactive XR simulations. Analyze manufacturing data, address common defects like contamination and etching errors, and implement strategies to improve process efficiency, product yield, and defect minimization.

Smart Home and Automation Systems

Explore modern electrical systems, focusing on smart home automation for lighting, HVAC, and security. Through virtual simulations, students will install and configure smart lighting, thermostats, cameras, and voice-activated devices. They will practice setting up and troubleshooting Wi-Fi-enabled smart home devices, learning to integrate them with traditional electrical systems. Real-time feedback will be provided on compatibility, system efficiency, and connectivity troubleshooting.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top