imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn the core processes involved in the development and production of therapeutic proteins and monoclonal antibodies.
  • Use virtual labs to simulate protein expression systems, including recombinant DNA technology and cell cultures.
  • Participate in interactive simulations of the drug discovery pipeline, from target identification to compound screening.
  • Apply purification methods such as chromatography and filtration in virtual labs to optimize product yield and purity.
  • Engage in virtual tutorials covering preclinical testing protocols, clinical trials, and the development timeline for new biopharmaceuticals.
  • Understand the challenges and requirements for ensuring the safety, efficacy, and regulatory compliance of therapeutic compounds.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Indoor Air Quality and Ventilation Systems

The Indoor Air Quality and Ventilation Systems Simulation teaches students how to design, install, and maintain systems that improve indoor air quality (IAQ) and ventilation. Virtual tools are provided for installing ventilation systems, such as air purifiers, dehumidifiers, and energy recovery ventilators (ERVs). Students engage in interactive exercises where they measure and control indoor humidity, carbon dioxide levels, and particulate matter. Real-time feedback is offered on ventilation efficiency, IAQ improvement, and system maintenance.

Kinematics and Dynamics of Machines

Train students in analyzing the motion and dynamics of mechanical systems and linkages using immersive XR simulations. Students will interact with virtual models of mechanisms such as gears, cams, pulleys, and crankshafts to observe and study their movement. The simulation offers interactive lessons on calculating velocities, accelerations, forces, and torques within mechanical linkages, with real-time feedback. The system will help students understand how to evaluate and optimize the efficiency of machines, force transmission, and performance.

Tool Grinding and Sharpening

Explore the fundamentals of tool grinding and sharpening to optimize cutting tools for improved performance. This simulation features virtual grinding machines where users can sharpen various tools, including drill bits, lathe cutting tools, and milling cutters. Learn proper tool geometry, cutting angles, and sharpening techniques tailored to each tool type. Receive real-time feedback on tool sharpness, cutting efficiency, and proper selection of grinding wheels, ensuring tools are maintained to perform at their best.

Motor Control Circuits Simulation

Explore the design and troubleshooting of motor control circuits used in industrial automation. In this simulation, students will virtually install and wire motor starters, relays, and control circuits for electric motors. They will program motor control systems, utilizing start/stop buttons, overload protection, and variable speed drives. The simulation offers real-time feedback on system performance, motor control accuracy, and troubleshooting techniques, enhanced with XR for an immersive learning experience.

Building Information Modeling (BIM)

Enhance understanding of BIM technology for planning, designing, and managing construction projects. Students can explore virtual environments to create 3D models of buildings and infrastructure, visualize construction phases, and estimate costs. Interactive tools enable the identification of design clashes and foster improved coordination across project stages. Feedback ensures precision in design, cost-effectiveness, and construction feasibility.

Biochemical Pathways and Metabolic Engineering

Explore metabolic pathways and their engineering through immersive XR simulations, focusing on optimizing microbial processes to produce valuable biochemicals. Utilize virtual tools to study pathways, identify bottlenecks, and implement strategies for efficient metabolite production.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top