imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Explore the components and operation of pipe hydrants, including valves, nozzles, and drain systems.
  • Enhance troubleshooting skills by identifying common issues such as leaks, corrosion, and pressure drops.
  • Engage with XR simulations to practice proper maintenance procedures, including valve operation, lubrication, and testing.
  • Improve knowledge of safety protocols for working with pressurized systems and hydrant equipment.
  • Analyze the performance of hydrant systems and optimize repair techniques for efficiency and longevity.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Fixture Design and Workholding Techniques

Explore XR-based simulations for designing and using fixtures, jigs, and workholding devices for machining complex parts. Students will engage in virtual fixture design, learning to create custom fixtures to hold irregularly shaped workpieces securely. The interactive lessons cover clamping techniques, workpiece alignment, and ensuring rigidity during cutting operations. Real-time feedback helps students assess the effectiveness of their fixture designs, machining stability, and part accuracy, all while improving their ability to handle complex machining tasks.

Transmission Line and Antenna Design

The Transmission Line and Antenna Design module teaches students the fundamentals of transmission line theory and antenna design principles for communication systems. Through virtual simulations, students design, analyze, and optimize transmission lines and antennas, focusing on performance and efficiency.

Welding Automation and Robotic Welding Simulation

The Welding Automation and Robotic Welding Simulation leverages XR to immerse users in operating and programming automated welding systems. Participants configure robotic arms for tasks like repetitive joints or intricate components, fine-tune welding parameters, and monitor processes for optimal performance. Feedback ensures proper setup, weld precision, and efficiency in industrial scenarios.

Lighting Systems Installation and Troubleshooting

Learn how to install and troubleshoot lighting systems, including incandescent, fluorescent, and LED lighting. Through virtual simulations, students will practice installing lighting circuits, switches, and dimmers in both residential and commercial settings. Scenarios will involve troubleshooting common issues such as flickering, burned-out bulbs, or short circuits. Real-time feedback will be provided on energy efficiency, circuit load, and system reliability.

Post-Surgical Care and Wound Management

Teach students how to assist in post-surgical care, including wound management and supporting patient recovery using XR technology. Virtual scenarios will guide students through the proper techniques for caring for post-operative wounds, such as cleaning, dressing, and monitoring for infection. Additionally, students will learn how to safely transfer patients from the OR to the recovery room, with real-time feedback on patient care protocols, monitoring vitals, and recognizing potential complications.

Bridge Design and Analysis

Explore the principles of designing and analyzing a variety of bridges, such as suspension, truss, arch, and beam structures, through immersive XR simulations. Students can enhance their skills by creating virtual models, analyzing forces, and assessing structural behavior under dynamic loads. Engage in interactive scenarios to test bridge designs against real-world challenges, including wind, earthquakes, and traffic. Receive detailed feedback on load distribution, material optimization, and stability improvements to refine designs effectively.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top