The Electromagnetics and Wave Propagation module offers virtual simulations of renewable energy systems, including solar power, wind turbines, and battery storage. Through interactive exercises, students analyze energy conversion efficiency, system design, and grid integration, gaining a deeper understanding of electromagnetic interactions and wave propagation in renewable energy technologies.
University / College
Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.
Explore the design, simulation, and tuning of control systems for mechanical and electrical applications. Through interactive simulations, students will design feedback control systems using PID (Proportional-Integral-Derivative) controllers to regulate variables such as speed, temperature, or position. Real-time feedback will help students evaluate control system stability, response times, and error minimization for optimal system performance.
Explore and enhance your understanding of modern manufacturing processes such as additive manufacturing (3D printing) and smart factory environments. With XR simulations, students can engage in virtual assembly lines where IoT devices track performance and optimize production. Gain insights into advanced techniques like 3D printing, laser cutting, and automated inspection. Experience real-time feedback on system performance, process optimization, and predictive maintenance, all within an immersive XR environment.
Gain practical insights into land surveying and the application of GIS technology in civil engineering projects. Virtual scenarios let students operate surveying instruments like total stations, theodolites, and GPS receivers to collect precise data. Interactive tools allow for the creation of topographic maps, contour lines, and spatial data analysis using GIS software. Feedback focuses on improving surveying precision, interpreting data accurately, and mastering mapping techniques.
The Pediatric Nursing Care Simulation module provides nursing students with virtual experiences to develop essential pediatric care skills. Students practice assessing health conditions, administering medications, and delivering age-appropriate care while interacting with children and collaborating with parents. The module also includes scenarios to handle pediatric emergencies and communication challenges.
Explore bioinformatics tools and computational biology concepts through immersive XR experiences. Analyze biological data, model complex systems, and gain hands-on experience in DNA sequencing, protein structure analysis, and pathway mapping with interactive virtual labs and tutorials.
Explore XR-driven simulations for inspecting, maintaining, and repairing various aircraft engines, including turboprop, turbojet, and piston engines. Students will virtually disassemble and reassemble engine components, perform routine inspections, diagnose engine problems, and conduct performance tests. Real-time feedback helps improve procedure accuracy, engine performance, and safety standard adherence.
imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.