imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Recognize the signs and symptoms of poisoning, overdose, and toxic substance exposure.
  • Explore treatment strategies including antidote administration, supportive care, and decontamination procedures.
  • Develop the skills to assess patients and determine the appropriate interventions for various toxicology scenarios.
  • Understand the pharmacological effects of toxins and apply knowledge to enhance patient outcomes.
  • Receive feedback on toxicology knowledge, decision-making, and the effectiveness of treatment interventions.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Opening and closing valves

Explore and enhance skills in safely operating and maintaining valves with XR simulations to practice various valve-opening and -closing scenarios.

Laparoscopic Surgery Simulation

Provide students with an immersive experience in laparoscopic surgery using XR technology, allowing them to practice minimally invasive techniques that require specialized instrument handling. Virtual scenarios will guide students in using laparoscopic instruments, such as graspers, scissors, and camera systems, to perform common procedures like cholecystectomy or hernia repair. Students will receive real-time feedback on instrument insertion, camera navigation, and maintaining visual clarity during surgery.

Thermodynamics and Heat Transfer

Provide hands-on experience in understanding thermodynamic processes and heat transfer mechanisms through immersive XR simulations. Virtual labs enable students to simulate processes like conduction, convection, and radiation across various materials and environments. Interactive scenarios allow exploration of thermodynamic cycles, such as the Rankine, Brayton, and Carnot cycles, offering a comprehensive understanding of energy systems. Real-time feedback helps students analyze temperature distribution, energy efficiency, and system optimization, fostering practical insights into thermodynamics and heat transfer in engineering applications.

Avionics Systems Troubleshooting

Explore XR-based simulations for maintaining and repairing avionics systems, including communication, navigation, and monitoring equipment. Students will engage with components like radar systems, transponders, flight control systems, and GPS, troubleshooting electrical issues, calibrating instruments, and updating software. Real-time feedback ensures optimal diagnostic accuracy, fault identification, and avionics performance.

Hydronic Heating Systems

The Hydronic Heating Systems Simulation trains students on hydronic heating systems, which use water to distribute heat throughout a building. Students can practice virtually installing and troubleshooting systems that include boilers, radiators, and piping systems. Interactive exercises focus on adjusting water flow rates, pressure settings, and temperature control for radiant heating. Real-time feedback is provided on system balance, heat distribution, and energy efficiency.

Control Systems and Automation

This XR simulation trains students in designing and implementing control systems for automated mechanical processes. It provides virtual scenarios where students can program control systems, such as PID controllers, to regulate critical variables like temperature, speed, and pressure in automated systems. Interactive lessons cover feedback loops, sensors, and actuators used in automated machinery, with real-time feedback on the stability, precision, and response times of the control systems.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top