imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Analyze vibration frequencies, amplitudes, and damping in rotating and reciprocating systems.
  • Detect resonance in mechanical structures and understand its impact on system performance.
  • Identify sources of unwanted vibrations and apply techniques to mitigate noise and wear.
  • Evaluate system stability and reliability through vibration analysis.
  • Optimize mechanical systems for improved performance and longevity by addressing vibration issues.

     

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Sustainability and Energy Efficiency in Mechatronics

Explore the principles of sustainable mechatronics design, with a focus on energy efficiency and resource management. Through virtual simulations, students will analyze the energy consumption of various mechatronic systems and processes, engage in interactive scenarios to optimize systems for energy efficiency, reduce waste, and improve sustainability. Real-time feedback on energy usage, cost savings, and environmental impact helps students refine their design choices for maximum sustainability.

Avionics and Control Systems

Explore the design and implementation of avionics systems used in modern aircraft, focusing on navigation, communication, and flight control. Engage in virtual scenarios to configure complex avionics systems such as autopilot, inertial navigation systems (INS), and radar. Through interactive lessons, integrate sensors, gyroscopes, accelerometers, and other electronic components for precise control. Receive feedback on avionics system accuracy, reliability, and the analysis of flight data in real-time.

Process Control and Automation Simulation

Immerse in process control and automation through interactive XR simulations. Work with virtual control panels, automated equipment, and robotic systems to monitor, adjust, and optimize semiconductor fabrication processes, while troubleshooting control issues with precision and efficiency.

Control System Design and Tuning

Explore the design, simulation, and tuning of control systems for mechanical and electrical applications. Through interactive simulations, students will design feedback control systems using PID (Proportional-Integral-Derivative) controllers to regulate variables such as speed, temperature, or position. Real-time feedback will help students evaluate control system stability, response times, and error minimization for optimal system performance.

Lighting Systems Installation and Troubleshooting

Learn how to install and troubleshoot lighting systems, including incandescent, fluorescent, and LED lighting. Through virtual simulations, students will practice installing lighting circuits, switches, and dimmers in both residential and commercial settings. Scenarios will involve troubleshooting common issues such as flickering, burned-out bulbs, or short circuits. Real-time feedback will be provided on energy efficiency, circuit load, and system reliability.

Transmission Line and Antenna Design

The Transmission Line and Antenna Design module teaches students the fundamentals of transmission line theory and antenna design principles for communication systems. Through virtual simulations, students design, analyze, and optimize transmission lines and antennas, focusing on performance and efficiency.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top