imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand fluid flow principles, including velocity, pressure, and turbulence, and their relevance in engineering systems.
  • Visualize and analyze fluid behavior in pipes, channels, and around objects like airfoils and turbines using virtual simulations.
  • Set up and interpret CFD simulations to study flow characteristics, boundary layers, and pressure distributions.
  • Explore strategies for drag reduction and optimizing fluid flow efficiency in various engineering applications.
  • Apply CFD analysis techniques to design and refine fluid-based systems for improved performance and energy efficiency.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Cell Culture Techniques and Tissue Engineering

Introduce students to essential cell culture techniques and tissue engineering principles, focusing on growing and maintaining cells for research, therapeutic, and industrial purposes. Cover foundational knowledge for regenerative medicine and explore tissue constructs and cell differentiation.

Mechanics of Solids and Fluids

Equip students with the foundational knowledge of solid mechanics and fluid dynamics, key principles in engineering applications. This course focuses on understanding the behavior of solid materials under stress and strain, as well as the movement of fluids within various engineering systems. Students will explore how these principles interact to optimize structural designs and fluid-based systems.

Environmental Engineering and Sustainability

Explore the principles of environmental engineering and sustainable design to address environmental challenges.

Gas Furnace Installation and Repair

The Gas Furnace Installation and Repair Simulation teaches students to install and repair gas furnaces, with a focus on proper venting and safety protocols for working with natural gas. Virtual scenarios guide students through connecting gas lines, ductwork, and venting systems for gas furnaces. Interactive exercises help students practice lighting pilot lights, adjusting gas valves, and monitoring flame sensors. The simulation provides feedback on safety practices, combustion efficiency, and troubleshooting issues like gas leaks, ignition failures, or cracked heat exchangers.

Plumbing Code Compliance and Inspections

Explore the essentials of plumbing code compliance and inspections. This simulation covers the installation of plumbing systems in adherence to local and national plumbing codes, focusing on DWV, water supply, and gas systems. Virtual inspection scenarios allow users to evaluate their work for compliance with safety standards and regulations. Real-time feedback is provided on code violations, safety concerns, and suggestions for improvements to pass inspections.

Wind and Solar Energy Systems Simulation

This XR simulation provides training on designing and analyzing renewable energy systems, focusing on wind turbines and solar panels. Virtual simulations allow students to explore the dynamics of wind turbines, including blade aerodynamics and energy conversion efficiency. Students can design solar panel arrays, optimize their angle for maximum energy generation, and evaluate their performance. The simulation offers real-time feedback on renewable energy efficiency, cost savings, and environmental impact, enabling students to make informed decisions about optimizing renewable energy systems.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top