imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Teach students how to design and assemble mechanical systems, including gears, motors, and actuators, for practical applications.
  • Introduce the integration of electrical components, such as sensors and control systems, to automate mechanical processes.
  • Enable students to assess system performance, including power consumption, efficiency, and alignment, to optimize the design.
  • Provide real-time feedback on system performance, encouraging students to fine-tune mechanical and electrical integrations for maximum efficiency.
  • Help students understand the interaction between mechanical systems and electrical components in achieving seamless automation.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Electrostatic Discharge (ESD) Prevention Simulation

Learn how to prevent Electrostatic Discharge (ESD) damage through interactive XR simulations. Understand the critical measures required to protect sensitive semiconductor devices during fabrication, handling, and packaging processes.

Quantum Mechanics and Nanotechnology

Delve into the fascinating world of quantum mechanics and its transformative applications in the field of nanotechnology. This course provides students with a comprehensive understanding of the quantum principles that govern the behavior of matter at the nanoscale, and how these principles can be leveraged to create advanced materials and devices.

Mechanical Ventilation Management

Equip students with the skills to manage mechanical ventilation for patients with respiratory failure using immersive XR simulations. Students will explore virtual environments where they adjust ventilator settings, manage different ventilation modes, and optimize respiratory support for various patient conditions.

Heat Pump Installation and Troubleshooting

The Heat Pump Installation and Troubleshooting Simulation trains students on the installation, operation, and troubleshooting of heat pumps in both heating and cooling modes. The simulation includes virtual scenarios for installing air-source and geothermal heat pumps, covering refrigerant line connections, electrical wiring, and thermostat setup. Students practice operating heat pumps, switching between heating and cooling modes, and troubleshooting issues such as defrost cycle problems, refrigerant flow issues, and reversing valve malfunctions. Real-time feedback is provided on system performance, heat transfer efficiency, and troubleshooting accuracy.

Machining Materials and Tool Selection

Provide hands-on training in selecting and machining various materials, including steel, aluminum, brass, and plastics. Through virtual XR simulations, students will match materials with the correct cutting tools based on hardness, toughness, and machinability. They will practice adjusting cutting parameters, like speed, feed rates, and depth of cut, ensuring optimal performance and longevity of tools in real-time machining scenarios. This immersive experience will help students understand material behavior and improve machining efficiency in both manual and CNC operations.

Woodworking Techniques and Joinery

The Woodworking Techniques and Joinery Simulation provides hands-on experience in various woodworking techniques and joinery methods used in carpentry projects. Virtual practice includes joinery techniques such as dovetail joints, mortise and tenon joints, lap joints, and miter joints. Interactive lessons guide students through cutting, sanding, and assembling wooden pieces with precision. Real-time feedback is provided on craftsmanship, joint strength, and finishing techniques.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top