imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Teach students how to design and assemble mechanical systems, including gears, motors, and actuators, for practical applications.
  • Introduce the integration of electrical components, such as sensors and control systems, to automate mechanical processes.
  • Enable students to assess system performance, including power consumption, efficiency, and alignment, to optimize the design.
  • Provide real-time feedback on system performance, encouraging students to fine-tune mechanical and electrical integrations for maximum efficiency.
  • Help students understand the interaction between mechanical systems and electrical components in achieving seamless automation.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Building Automation Systems (BAS) and Smart HVAC

The Building Automation Systems (BAS) and Smart HVAC Simulation equips students with skills in installing and programming BAS to control HVAC systems, lighting, and other building systems in large commercial buildings. Students will engage in virtual scenarios to set up and program BAS systems, optimize energy use, and monitor the indoor climate. Interactive exercises will involve configuring smart thermostats, sensors, and networked devices for automated temperature and airflow control. Real-time feedback will focus on system efficiency, energy consumption, and troubleshooting networked components.

Fuel System Inspection and Maintenance

Train in the inspection and maintenance of aircraft fuel systems, with a focus on tanks, pumps, lines, and valves. Virtual scenarios will allow for the detection of leaks, blockages, and contamination in fuel systems. Interactive lessons cover cleaning fuel filters, calibrating gauges, and testing the fuel delivery system, with real-time feedback on system efficiency and safety compliance.

Metal Cutting and Preparation Simulation

The Metal Cutting and Preparation Simulation immerses users in various metal cutting techniques such as oxy-fuel, plasma cutting, and grinding, all essential for preparing metals for welding. The simulation includes interactive scenarios for cutting different metals and thicknesses, along with grinding and smoothing edges. Feedback is provided on cut precision, surface quality, and preparation to ensure optimal conditions for welding.

Protein Engineering and Biochemistry

Train students in essential techniques for protein expression, purification, and analysis, with immersive XR experiences to explore biotechnology applications. Focus on recombinant protein expression, purification methods, and enzyme activity analysis, along with designing proteins with improved properties through interactive virtual labs.

Machining Materials and Tool Selection

Provide hands-on training in selecting and machining various materials, including steel, aluminum, brass, and plastics. Through virtual XR simulations, students will match materials with the correct cutting tools based on hardness, toughness, and machinability. They will practice adjusting cutting parameters, like speed, feed rates, and depth of cut, ensuring optimal performance and longevity of tools in real-time machining scenarios. This immersive experience will help students understand material behavior and improve machining efficiency in both manual and CNC operations.

Electromagnetics and Wave Propagation

The Electromagnetics and Wave Propagation module allows students to explore the principles of electromagnetic fields and wave propagation through virtual labs and interactive scenarios. By simulating key concepts, students gain insights into the behavior of electromagnetic waves, field interactions, and signal transmission across various media and systems.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top