imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn key techniques like die bonding, wire bonding, and encapsulation, which are crucial for semiconductor device functionality and reliability.
  • Explore the purpose of these processes in device protection, electrical connections, and mechanical stability.
  • Use interactive virtual tools to simulate equipment for die bonding, wire bonding, and encapsulation.
  • Gain proficiency in managing assembly machines, adjusting bonding parameters, and ensuring proper alignment and placement.
  • Conduct virtual inspections to identify defects such as improper bonding, misalignment, and encapsulation flaws.
  • Receive real-time feedback on handling errors, assembly techniques, and preventing defects during packaging.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Corrosion Detection and Prevention

XR-powered simulation for detecting and preventing corrosion in aircraft components. Engage in immersive virtual scenarios to identify corrosion types, apply protective coatings, and restore metal surfaces. Key features include interactive corrosion analysis, advanced cleaning techniques, and innovative protection strategies to ensure long-term component durability.

CAM (Computer-Aided Manufacturing) Integration

Explore XR-driven CAM (Computer-Aided Manufacturing) software simulations to teach students how to generate toolpaths for CNC machining. Students will virtually import 3D models, set up machining operations, and create G-code for CNC machines. Interactive lessons guide them through toolpath creation, cutting strategies, and simulating machining operations. Feedback on toolpath efficiency, machining time, and material removal helps refine their CAM and CNC programming skills.

Roof Construction and Truss Assembly

The Roof Construction and Truss Assembly Simulation provides training on roof construction, focusing on the installation of rafters, trusses, and roofing materials. Virtual scenarios guide students through assembling trusses and rafters for various roof designs, including gable, hip, and flat roofs. Interactive exercises allow students to practice installing roof sheathing, underlayment, and roofing materials such as shingles or tiles. Real-time feedback is given on roof slope, weatherproofing techniques, and ensuring the structural integrity of the roof.

Molecular Biology and DNA Manipulation

The Molecular Biology and DNA Manipulation module introduces students to key concepts in molecular biology, focusing on DNA structure, replication, transcription, and translation. Through virtual labs and interactive tutorials, students explore essential laboratory techniques in genetic research and manipulation.

Jackhammer Use and Concrete Work

Explore the techniques and safety practices required for effectively using a jackhammer in concrete demolition and surface preparation, enhancing skills through XR simulations for hands-on experience in various concrete tasks.

Spacecraft Design and Orbital Mechanics

Dive into the design and analysis of spacecraft for space missions, focusing on key components like propulsion, thermal control, and communication systems. Use virtual tools to create satellites, space probes, and crewed spacecraft while mastering the principles of orbital mechanics. Learn to calculate orbital trajectories, understand gravitational effects, and simulate spacecraft maneuvering in space. Receive feedback on mission planning, fuel efficiency, and spacecraft stability in various orbits to optimize space exploration projects.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top