imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Learn key techniques like die bonding, wire bonding, and encapsulation, which are crucial for semiconductor device functionality and reliability.
  • Explore the purpose of these processes in device protection, electrical connections, and mechanical stability.
  • Use interactive virtual tools to simulate equipment for die bonding, wire bonding, and encapsulation.
  • Gain proficiency in managing assembly machines, adjusting bonding parameters, and ensuring proper alignment and placement.
  • Conduct virtual inspections to identify defects such as improper bonding, misalignment, and encapsulation flaws.
  • Receive real-time feedback on handling errors, assembly techniques, and preventing defects during packaging.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Control Systems and Automation

Explore the fundamentals of control systems and their application in automation through immersive XR simulations.

Medical Imaging Techniques

Enhance students' understanding of medical imaging techniques such as MRI, CT, ultrasound, and X-ray through immersive XR simulations. This interactive platform allows students to control virtual imaging equipment, visualize real-time results, and interpret medical images to identify anatomical structures and diagnose conditions effectively.

Bridge Design and Analysis

Explore the principles of designing and analyzing a variety of bridges, such as suspension, truss, arch, and beam structures, through immersive XR simulations. Students can enhance their skills by creating virtual models, analyzing forces, and assessing structural behavior under dynamic loads. Engage in interactive scenarios to test bridge designs against real-world challenges, including wind, earthquakes, and traffic. Receive detailed feedback on load distribution, material optimization, and stability improvements to refine designs effectively.

Refrigerant Handling and Charging Simulation

The Refrigerant Handling and Charging Simulation provides training on safely handling refrigerants, charging HVAC systems, and recovering refrigerants in compliance with EPA regulations. The simulation features virtual scenarios where students select the appropriate refrigerant types, connect service gauges, and monitor pressures during the charging process. Interactive exercises on refrigerant recovery allow students to practice safe recovery techniques before repairs or replacements. Real-time feedback is provided on refrigerant levels, system pressures, and adherence to EPA regulations for proper refrigerant handling.

Transmission Line and Antenna Design

The Transmission Line and Antenna Design module teaches students the fundamentals of transmission line theory and antenna design principles for communication systems. Through virtual simulations, students design, analyze, and optimize transmission lines and antennas, focusing on performance and efficiency.

Engine Design and Powertrain Systems

Explore the intricate world of engine design and powertrain systems in a fully immersive XR environment. This simulation allows students to engage with virtual 3D models of both gasoline and diesel engines. Students can disassemble, study, and reassemble components like pistons, cylinders, crankshafts, and fuel injectors to understand their function and interaction.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top