imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Extract, amplify, and analyze DNA samples using PCR and gel electrophoresis tools.
  • Conduct virtual experiments using techniques like DNA sequencing, cloning, and CRISPR.
  • Receive insights on technique accuracy, data interpretation, and genetic research outcomes.
  • Explain the principles and applications of genetic modifications and their implications in research and medicine.
  • Perform virtual experiments to extract DNA, amplify it using PCR, and conduct gel electrophoresis.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Surveying and Geographic Information Systems (GIS)

Gain practical insights into land surveying and the application of GIS technology in civil engineering projects. Virtual scenarios let students operate surveying instruments like total stations, theodolites, and GPS receivers to collect precise data. Interactive tools allow for the creation of topographic maps, contour lines, and spatial data analysis using GIS software. Feedback focuses on improving surveying precision, interpreting data accurately, and mastering mapping techniques.

Fixture Design and Workholding Techniques

Explore XR-based simulations for designing and using fixtures, jigs, and workholding devices for machining complex parts. Students will engage in virtual fixture design, learning to create custom fixtures to hold irregularly shaped workpieces securely. The interactive lessons cover clamping techniques, workpiece alignment, and ensuring rigidity during cutting operations. Real-time feedback helps students assess the effectiveness of their fixture designs, machining stability, and part accuracy, all while improving their ability to handle complex machining tasks.

Plant Biotechnology and Genetic Modification

Discover plant biotechnology and genetic modification through immersive XR simulations, focusing on breeding, genetic engineering, and crop improvement. Apply virtual labs to create genetically modified plants with enhanced traits, explore transformation techniques, and address ethical considerations in GMO development.

Smart Grid and Internet of Things (IoT) Integration

The Smart Grid and Internet of Things (IoT) Integration module trains students on integrating smart grid technology with IoT devices in electrical systems. Through interactive virtual simulations, students explore the design, communication, and management of smart grid components, focusing on scalability, security, and energy efficiency.

Backflow Prevention and Testing

Explore the installation and testing of backflow prevention devices essential for safeguarding water supplies. This simulation covers the proper installation of backflow prevention devices in both residential and commercial plumbing systems. It also includes simulated testing of these devices, focusing on pressure checks and functional testing, with real-time feedback on installation quality, performance, and code compliance.

Bridge Design and Analysis

Explore the principles of designing and analyzing a variety of bridges, such as suspension, truss, arch, and beam structures, through immersive XR simulations. Students can enhance their skills by creating virtual models, analyzing forces, and assessing structural behavior under dynamic loads. Engage in interactive scenarios to test bridge designs against real-world challenges, including wind, earthquakes, and traffic. Receive detailed feedback on load distribution, material optimization, and stability improvements to refine designs effectively.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top