imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Grasp the key principles of scaling up bioprocess operations from lab to industrial levels through virtual XR experiences.
  • Explore the effects of scale-up on critical factors like temperature, pH, oxygen transfer, and nutrient availability.
  • Use virtual bioreactor simulations to control and optimize critical parameters such as temperature, pH, oxygen levels, and nutrient supply.
  • Participate in interactive tutorials focusing on scaling up production for biologics, vaccines, and therapeutic compounds.
  • Experiment with virtual scenarios to determine optimal conditions for maximizing product yield, cost efficiency, and purity.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Mental Health and Psychiatric Nursing

The Mental Health and Psychiatric Nursing module provides nursing students with virtual experiences to care for patients with various mental health conditions. Through interactive scenarios and lessons, students practice de-escalation techniques, active listening, and therapeutic interventions while focusing on empathy, communication, and patient-centered care.

Finite Element Analysis (FEA) Simulation

Train students to perform stress, strain, and deformation analysis on mechanical components using Finite Element Analysis (FEA) through immersive XR simulations. The virtual environment allows students to apply loads, constraints, and boundary conditions to 3D models of mechanical components, providing interactive lessons on stress distribution, thermal effects, vibration analysis, and material failure points. Feedback is provided on the structural integrity, safety factors, and optimization of mechanical designs to improve understanding and decision-making in engineering design processes.

Propulsion Systems and Engine Design

Immerse yourself in the world of propulsion systems with an in-depth exploration of jet engines, rockets, and electric propulsion systems. Through virtual labs, gain hands-on experience in analyzing key engine components, including compressors, turbines, combustion chambers, and nozzles. Engage with interactive simulations that simulate fuel efficiency, thrust generation, and thermal management in propulsion systems, while optimizing engine performance for various operational conditions.

Mechanical Ventilation Management

Equip students with the skills to manage mechanical ventilation for patients with respiratory failure using immersive XR simulations. Students will explore virtual environments where they adjust ventilator settings, manage different ventilation modes, and optimize respiratory support for various patient conditions.

Smart Grid and Internet of Things (IoT) Integration

The Smart Grid and Internet of Things (IoT) Integration module trains students on integrating smart grid technology with IoT devices in electrical systems. Through interactive virtual simulations, students explore the design, communication, and management of smart grid components, focusing on scalability, security, and energy efficiency.

Aircraft Structural Repair and Sheet Metal Work

Engage with XR-based simulations for repairing aircraft structures, focusing on sheet metal work, composites, and ensuring structural integrity. Students will work on repairing fuselage sections, wings, and other components using riveting, welding, and composite techniques. Real-time feedback ensures adherence to engineering standards and maintains the aircraft's aerodynamic properties.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top