imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Grasp the key principles of scaling up bioprocess operations from lab to industrial levels through virtual XR experiences.
  • Explore the effects of scale-up on critical factors like temperature, pH, oxygen transfer, and nutrient availability.
  • Use virtual bioreactor simulations to control and optimize critical parameters such as temperature, pH, oxygen levels, and nutrient supply.
  • Participate in interactive tutorials focusing on scaling up production for biologics, vaccines, and therapeutic compounds.
  • Experiment with virtual scenarios to determine optimal conditions for maximizing product yield, cost efficiency, and purity.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Electrical Circuits and Electronics

Enhance your understanding of electrical circuits, components, and electronic systems with immersive XR simulations.

CNC Machine Programming and Operation

CNC Machine Programming and Operation trains students on Computer Numerical Control (CNC) machines, essential in modern manufacturing for automated machining. Students will virtually program CNC machines to cut, mill, or shape materials according to specific designs, and simulate the generation and execution of G-code. The course includes 3D visualization of machining paths, with real-time feedback on tool wear, precision, and cycle times to optimize machining processes.

Thermodynamics and Heat Transfer

Provide hands-on experience in understanding thermodynamic processes and heat transfer mechanisms through immersive XR simulations. Virtual labs enable students to simulate processes like conduction, convection, and radiation across various materials and environments. Interactive scenarios allow exploration of thermodynamic cycles, such as the Rankine, Brayton, and Carnot cycles, offering a comprehensive understanding of energy systems. Real-time feedback helps students analyze temperature distribution, energy efficiency, and system optimization, fostering practical insights into thermodynamics and heat transfer in engineering applications.

Earthquake Engineering and Seismic Analysis

Explore the principles of designing earthquake-resistant structures to mitigate seismic damage. Students can simulate seismic activities and observe their effects on various infrastructures, gaining practical insights into structural behavior. Interactive lessons focus on implementing base isolation, dampers, and reinforced materials to enhance structural resilience. Feedback provides guidance on safety compliance, performance optimization, and effective design techniques for seismic resistance.

Welding Blueprint Reading and Symbols

The Welding Blueprint Reading and Symbols simulation uses XR to enhance understanding of welding blueprints and symbols, enabling accurate interpretation and application of welding instructions.

Kinematics and Dynamics of Machines

Train students in analyzing the motion and dynamics of mechanical systems and linkages using immersive XR simulations. Students will interact with virtual models of mechanisms such as gears, cams, pulleys, and crankshafts to observe and study their movement. The simulation offers interactive lessons on calculating velocities, accelerations, forces, and torques within mechanical linkages, with real-time feedback. The system will help students understand how to evaluate and optimize the efficiency of machines, force transmission, and performance.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top