imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Grasp the key principles of scaling up bioprocess operations from lab to industrial levels through virtual XR experiences.
  • Explore the effects of scale-up on critical factors like temperature, pH, oxygen transfer, and nutrient availability.
  • Use virtual bioreactor simulations to control and optimize critical parameters such as temperature, pH, oxygen levels, and nutrient supply.
  • Participate in interactive tutorials focusing on scaling up production for biologics, vaccines, and therapeutic compounds.
  • Experiment with virtual scenarios to determine optimal conditions for maximizing product yield, cost efficiency, and purity.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Flight Control Systems Calibration and Adjustment

Immerse in an XR-powered environment to master the calibration and adjustment of flight control systems, including ailerons, rudders, elevators, and flaps. Gain hands-on experience in ensuring precision and smooth operation for optimal aircraft control.

Surface Grinding and Finishing

Explore XR-based simulations for surface grinding and finishing operations. Students will interact with virtual surface grinders, simulating grinding processes on different materials to achieve precise flatness and superior surface finishes. Through scenarios involving the selection of grinding wheels, feed adjustments, and optimal workpiece setups, users can refine their skills in precision grinding. Feedback is provided on surface finish quality, material removal rates, and grinding accuracy, allowing users to enhance their machining abilities.

Cell Culture Techniques and Tissue Engineering

Introduce students to essential cell culture techniques and tissue engineering principles, focusing on growing and maintaining cells for research, therapeutic, and industrial purposes. Cover foundational knowledge for regenerative medicine and explore tissue constructs and cell differentiation.

Drug Delivery Systems and Microfluidics

Empower students to master the design and function of drug delivery systems with a focus on microfluidic devices for precise medication administration. Through immersive simulations, students will design and test microfluidic devices, optimizing fluid dynamics and dosage control for various medical conditions.

Tool Grinding and Sharpening

Explore the fundamentals of tool grinding and sharpening to optimize cutting tools for improved performance. This simulation features virtual grinding machines where users can sharpen various tools, including drill bits, lathe cutting tools, and milling cutters. Learn proper tool geometry, cutting angles, and sharpening techniques tailored to each tool type. Receive real-time feedback on tool sharpness, cutting efficiency, and proper selection of grinding wheels, ensuring tools are maintained to perform at their best.

Biomedical Signal Processing and Analysis

Equip students with the skills to acquire, process, and analyze biomedical signals such as ECG, EEG, EMG, and blood pressure. Using interactive simulations, learners will explore signal collection from virtual patients, apply signal processing techniques, and interpret data for diagnosing medical conditions.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top